CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Dynamic variability of the phytoplankton electron requirement for carbon fixation in eastern Australian waters
Authors
JR Crosswell
MA Doblin
+5 more
DJ Hughes
K Oxborough
PJ Ralph
DJ Suggett
D Varkey
Publication date
1 February 2020
Publisher
'Elsevier BV'
Doi
Cite
Abstract
© 2019 Elsevier B.V. Fast Repetition Rate fluorometry (FRRf) generates high-resolution measures of phytoplankton primary productivity as electron transport rates (ETRs). How ETRs scale to corresponding inorganic carbon (C) uptake rates (the so-called electron requirement for carbon fixation, Φe,C), inherently describes the extent and effectiveness with which absorbed light energy drives C-fixation. However, it remains unclear whether and how Φe,C follows predictable patterns for oceanographic datasets spanning physically dynamic, and complex, environmental gradients. We utilise a unique high-throughput approach, coupling ETRs and 14C-incubations to produce a semi-continuous dataset of Φe,C (n = 80), predominantly from surface waters, along the Australian coast (Brisbane to the Tasman Sea), including the East Australian Current (EAC). Environmental conditions along this transect could be generally grouped into cooler, more nutrient-rich waters dominated by larger size-fractionated Chl-a (>10 μm) versus warmer nutrient-poorer waters dominated by smaller size-fractionated Chl-a (<2 μm). Whilst Φe,C was higher for warmer water samples, environmental conditions alone explained <20% variance of Φe,C, and changes in predominant size-fraction(s) distributions of Chl-a (biomass) failed to explain variance of Φe,C. Instead, normalised Stern-Volmer non-photochemical quenching (NPQNSV = F0′/Fv′) was a better predictor of Φe,C, explaining ~55% of observed variability. NPQNSV is a physiological descriptor that accounts for changes in both long-term driven acclimation in non-radiative decay, and quasi-instantaneous PSII downregulation, and thus may prove a useful predictor of Φe,C across physically-dynamic regimes, provided the slope describing their relationship is predictable. We also consider recent advances in fluorescence-based corrections to evaluate the potential role of baseline fluorescence (Fb) in contributing to overestimation of Φe,C and the correlation between Φe,C and NPQNSV – in doing so, we highlight the need for Fb corrections for future field-based assessments of Φe,C
Similar works
Full text
Available Versions
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 20/04/2021