12 research outputs found
Neurofilament Light Chain as a Biomarker in Multiple Sclerosis
Due to the unpredictable course and heterogenous treatment response in multiple sclerosis (MS), there is a clear need for biomarkers that reflect disease activity in the clinical follow-up of these patients. Neurofilaments are neuron-specific components of the cytoskeleton that can be assayed in different body compartments. They have been explored as potential biomarkers for many years. Neurofilament light chain (NF-L) appears the most promising biomarker in MS patients, and there is now little doubt that NF-L should have a role in the follow-up of MS patients. Newer assays and techniques for NF-L detection available in serum samples confirms the usefulness of NF-L as a biomarker. Nevertheless, there is still a need for prospective studies, and studies to determine clinical useful cut-off values. This review evaluates the strengths and weaknesses of NF-L as a biomarker in patients with MS
Using urine to diagnose large-scale mtDNA deletions in adult patients
Objective: The aim of this study was to evaluate if urinary sediment cells offered a robust alternative to muscle biopsy for the diagnosis of single mtDNA deletions. Methods: Eleven adult patients with progressive external ophthalmoplegia and a known single mtDNA deletion were investigated. Urinary sediment cells were used to isolate DNA, which was then subjected to long-range polymerase chain reaction. Where available, the patient's muscle DNA was studied in parallel. Breakpoint and thus deletion size were identified using both Sanger sequencing and next generation sequencing. The level of heteroplasmy was determined using quantitative polymerase chain reaction. Results: We identified the deletion in urine in 9 of 11 cases giving a sensitivity of 80%. Breakpoints and deletion size were readily detectable in DNA extracted from urine. Mean heteroplasmy level in urine was 38% +/- 26 (range 8 - 84%), and 57% +/- 28 (range 12 - 94%) in muscle. While the heteroplasmy level in urinary sediment cells differed from that in muscle, we did find a statistically significant correlation between these two levels (R = 0.714, P = 0.031(Pearson correlation)). Interpretation: Our findings suggest that urine can be used to screen patients suspected clinically of having a single mtDNA deletion. Based on our data, the use of urine could considerably reduce the need for muscle biopsy in this patient group.Peer reviewe
Research priorities for mitochondrial disorders: Current landscape and patient and professional views
Primary mitochondrial disorders encompass a wide range of clinical presentations and a spectrum of severity. They currently lack effective disease-modifying therapies and have a high mortality and morbidity rate. It is therefore essential to know that competitively-funded research designed by academics meets core needs of people with mitochondrial disorders and their clinicians. The Priority Setting Partnerships are an established collaborative methodology that brings patients, carers and families, charity representatives and clinicians together to try to establish the most pressing and unanswered research priorities for a particular disease. We developed a web-based questionnaire, requesting all patients affected by primary mitochondrial disease, their carers, and clinicians to pose their research questions. This yielded 709 questions from 147 participants. These were grouped into overarching themes including basic biology, causation, health services, clinical management, social impacts, prognosis, prevention, symptoms, treatment, and psychological impact. Following the removal of 'answered questions' the process resulted in a list of 42 discrete, answerable questions. This was further refined by web-based ranking by the community to 24 questions. These were debated at a face-to-face workshop attended by a diverse range of patients, carers, charity representatives and clinicians to create a definitive 'Top Ten of unanswered research questions for primary mitochondrial disorders'. These Top Ten questions related to understanding biological processes, including triggers of disease onset, mechanisms underlying progression and reasons for differential symptoms between individuals with identical genetic mutations; new treatments; biomarker discovery; psychological support; and optimal management of stroke-like episodes and fatigue
Research priorities for mitochondrial disorders: current landscape and patient and professional views
Primary mitochondrial disorders encompass a wide range of clinical presentations and a spectrum of severity. They currently lack effective disease-modifying therapies and have a high mortality and morbidity rate. It is therefore essential to know that competitively-funded research designed by academics meets core needs of people with mitochondrial disorders and their clinicians. The Priority Setting Partnerships are an established collaborative methodology that brings patients, carers and families, charity representatives and clinicians together to try to establish the most pressing and unanswered research priorities for a particular disease.
We developed a web-based questionnaire, requesting all patients affected by primary mitochondrial disease, their carers, and clinicians to pose their research questions. This yielded 709 questions from 147 participants. These were grouped into overarching themes including basic biology, causation, health services, clinical management, social impacts, prognosis, prevention, symptoms, treatment, and psychological impact. Following the removal of ‘answered questions’ the process resulted in a list of 42 discrete, answerable questions. This was further refined by web-based ranking by the community to 24 questions. These were debated at a face-to-face workshop attended by a diverse range of patients, carers, charity representatives and clinicians to create a definitive ‘Top Ten of unanswered research questions for primary mitochondrial disorders’. These Top Ten questions related to understanding biological processes, including triggers of disease onset, mechanisms underlying progression and reasons for differential symptoms between individuals with identical genetic mutations; new treatments; biomarker discovery; psychological support; and optimal management of stroke-like episodes and fatigue
Management of seizures in patients with primary mitochondrial diseases: consensus statement from the InterERNs Mitochondrial Working Group
Background and purposePrimary mitochondrial diseases (PMDs) are common inborn errors of energy metabolism, with an estimated prevalence of one in 4300. These disorders typically affect tissues with high energy requirements, including heart, muscle and brain. Epilepsy may be the presenting feature of PMD, can be difficult to treat and often represents a poor prognostic feature. The aim of this study was to develop guidelines and consensus recommendations on safe medication use and seizure management in mitochondrial epilepsy. MethodsA panel of 24 experts in mitochondrial medicine, pharmacology and epilepsy management of adults and/or children and two patient representatives from seven countries was established. Experts were members of five different European Reference Networks, known as the Mito InterERN Working Group. A Delphi technique was used to allow the panellists to consider draft recommendations on safe medication use and seizure management in mitochondrial epilepsy, using two rounds with predetermined levels of agreement. ResultsA high level of consensus was reached regarding the safety of 14 out of all 25 drugs reviewed, resulting in endorsement of National Institute for Health and Care Excellence guidelines for seizure management, with some modifications. Exceptions including valproic acid in POLG disease, vigabatrin in patients with gamma-aminobutyric acid transaminase deficiency and topiramate in patients at risk for renal tubular acidosis were highlighted. ConclusionsThese consensus recommendations describe our intent to improve seizure control and reduce the risk of drug-related adverse events in individuals living with PMD-related epilepsy
Elevated cholesterol in ATAD3 mutants is a compensatory mechanism that leads to membrane cholesterol aggregation
Aberrant cholesterol metabolism causes neurological disease and neurodegeneration, and mitochondria have been linked to perturbed cholesterol homeostasis via the study of pathological mutations in the ATAD3 gene cluster. However, whether the cholesterol changes were compensatory or contributory to the disorder was unclear, and the effects on cell membranes and the wider cell were also unknown.
Using patient-derived cells, we show that cholesterol perturbation is a conserved feature of pathological ATAD3 variants that is accompanied by an expanded lysosome population containing membrane whorls characteristic of lysosomal storage diseases. Lysosomes are also more numerous in Drosophila neural progenitor cells expressing mutant Atad3, which exhibit abundant membrane-bound cholesterol aggregates, many of which co-localize with lysosomes. By subjecting the Drosophila Atad3 mutant to nutrient restriction and cholesterol supplementation, we show that the mutant displays heightened cholesterol dependence.
Collectively, these findings suggest that elevated cholesterol enhances tolerance to pathological ATAD3 variants; however, this comes at the cost of inducing cholesterol aggregation in membranes, which lysosomal clearance only partly mitigates
Elevated cholesterol in ATAD3 mutants is a compensatory mechanism that leads to membrane cholesterol aggregation
Aberrant cholesterol metabolism causes neurological disease and neurodegeneration, and mitochondria have been linked to perturbed cholesterol homeostasis via the study of pathological mutations in the ATAD3 gene cluster. However, whether the cholesterol changes were compensatory or contributory to the disorder was unclear, and the effects on cell membranes and the wider cell were also unknown. Using patient-derived cells, we show that cholesterol perturbation is a conserved feature of pathological ATAD3 variants that is accompanied by an expanded lysosome population containing membrane whorls characteristic of lysosomal storage diseases. Lysosomes are also more numerous in Drosophila neural progenitor cells expressing mutant Atad3, which exhibit abundant membrane-bound cholesterol aggregates, many of which co-localize with lysosomes. By subjecting the Drosophila Atad3 mutant to nutrient restriction and cholesterol supplementation, we show that the mutant displays heightened cholesterol dependence. Collectively, these findings suggest that elevated cholesterol enhances tolerance to pathological ATAD3 variants; however, this comes at the cost of inducing cholesterol aggregation in membranes, which lysosomal clearance only partly mitigates.M.M.O. was supported by a predoctoral fellowship from the University of the Basque Country (PIF18/317) and later partially supported by the Ikerbasque, Basque Foundation for Science IKUR strategy Neurodegenprot project. A.L. and U.F.P. were recipients of pre-doctoral fellowships from the Basque Government (PRE_2019_1_0184 and PRE_2018_1_0253). The study was supported by funding to I.J.H. from the Instituto de Salud Carlos III (PI17-00380; PI20/00096) and the Basque Government Department of Health (Osasun Saila, Eusko Jaurlaritzako) (grants 2021111070; 2022333050; 2018111043; 2018222031). A.Sp. receives support from Miriam Marks Senior Fellowship, Brain Research UK (202021-26), the Research Councils UK (MR/X002365/1) and the Lily Foundation. W.H.Y. is supported by the National Institute of Neurological Disorders and Stroke (5R01 NS121298-03) of the National Institutes of Health, Oklahoma Center for Adult Stem Cell Research (OCASCR) (221009 and 241006) and Presbyterian Health Foundation (4411-09-10-0).Peer reviewe