6,068 research outputs found

    Thermostat for non-equilibrium multiparticle collision dynamics simulations

    Get PDF
    Multiparticle collision dynamics (MPC), a particle-based mesoscale simulation technique for com- plex fluid, is widely employed in non-equilibrium simulations of soft matter systems. To maintain a defined thermodynamic state, thermalization of the fluid is often required for certain MPC variants. We investigate the influence of three thermostats on the non-equilibrium properties of a MPC fluid under shear or in Poiseuille flow. In all cases, the local velocities are scaled by a factor, which is either determined via a local simple scaling approach (LSS), a Monte Carlo-like procedure (MCS), or by the Maxwell-Boltzmann distribution of kinetic energy (MBS). We find that the various scal- ing schemes leave the flow profile unchanged and maintain the local temperature well. The fluid viscosities extracted from the various simulations are in close agreement. Moreover, the numerically determined viscosities are in remarkably good agreement with the respective theoretically predicted values. At equilibrium, the calculation of the dynamic structure factor reveals that the MBS method closely resembles an isothermal ensemble, whereas the MCS procedure exhibits signatures of an adi- abatic system at larger collision-time steps. Since the velocity distribution of the LSS approach is non-Gaussian, we recommend to apply the MBS thermostat, which has been shown to produce the correct velocity distribution even under non-equilibrium conditions.Comment: 12 pages, 5 figures in Phys. Rev. E, 201

    Quantification of spatial intensity correlations and photodetector intensity fluctuations of coherent light reflected from turbid particle suspensions

    Get PDF
    We present a model for predicting the spatial intensity correlation function of dynamic speckle patterns formed by light backscattered from turbid suspensions, and an experimental validation of these predictions. The spatial correlation varies remarkably with multiple scattering. The provided computational scheme is a step towards correctly interpreting signals obtained from instruments based on the measurement of dynamic speckle patterns in the far field

    Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurements of diffuse light \ud

    Get PDF
    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a turbid suspension of particles undergoing Brownian and translational motion. The path length resolution of this instrument is compared with a system using single mode fibers for illumination and detection. The optical path lengths are determined from the zero order moment of the phase modulation peak in the power spectrum. The weighted first moment, which is equal to the average Doppler shift, shows a linear response for different mean flow velocities within the physiological rang

    Directionally asymmetric self-assembly of cadmium sulfide nanotubes using porous alumina nanoreactors: Need for chemohydrodynamic instability at the nanoscale

    Full text link
    We explore nanoscale hydrodynamical effects on synthesis and self-assembly of cadmium sulfide nanotubes oriented along one direction. These nanotubes are synthesized by horizontal capillary flow of two different chemical reagents from opposite directions through nanochannels of porous anodic alumina which are used primarily as nanoreactors. We show that uneven flow of different chemical precursors is responsible for directionally asymmetric growth of these nanotubes. On the basis of structural observations using scanning electron microscopy, we argue that chemohydrodynamic convective interfacial instability of multicomponent liquid-liquid reactive interface is necessary for sustained nucleation of these CdS nanotubes at the edges of these porous nanochannels over several hours. However, our estimates clearly suggest that classical hydrodynamics cannot account for the occurrence of such instabilities at these small length scales. Therefore, we present a case which necessitates further investigation and understanding of chemohydrodynamic fluid flow through nanoconfined channels in order to explain the occurrence of such interfacial instabilities at nanometer length scales.Comment: 26 pages, 6 figures; http://www.iiserpune.ac.in/researchhighlight

    Hydrodynamic correlations in shear flow: A Multiparticle--Collision--Dynamics simulation study

    Get PDF
    The nonequilibrium hydrodynamic correlations of a Multiparticle-Collision-Dynamics (MPC) fluid in shear flow are studied by analytical calculations and simulations. The Navier-Stokes equations for a MPC fluid are linearized about the shear flow and the hydrodynamic modes are evaluated as an expansion in the momentum vector. The shear-rate dependence and anisotropy of the transverse and longitudinal velocity correlations are analyzed. We demonstrate that hydrodynamic correlations in shear flow are anisotropic, specifically, the two transverse modes are no longer identical. In addition, our simulations reveal the directional dependence of the frequency and attenuation of the longitudinal velocity correlation function. Furthermore, the velocity autocorrelation functions of a tagged fluid particle in shear flow are determined. The simulations results for various hydrodynamic correlations agree very well with the theoretical predictions.Comment: 8 pages, 5 figure

    Measurement of particle flux in a static matrix with suppressed influence of optical properties, using low coherence interferometry

    Get PDF
    Perfusion measurements using conventional laser Doppler techniques are affected by the variations in tissue optical properties. Differences in absorption and scattering will induce different path lengths and consequently will alter the probability that a Doppler shift will occur. In this study, the fraction of Doppler shifted photons and the Doppler broadening of a dynamic medium, are measured with a phase modulated low coherence Mach-Zehnder interferometer. Path length-resolved dynamic light scattering measurements are performed in various media having a constant concentration of dynamic particles inside a static matrix with different scattering properties and the results are compared with a conventional laser Doppler technique, with a simple model and with Monte Carlo simulations. We demonstrate that, for larger optical path lengths, the scattering coefficient of the static matrix in which the moving particles are embedded have a small to minimal effect on the measured fraction of Doppler shifted photons and on the measured average Doppler frequency of the Doppler shifted light. This approach has potential applications in measuring perfusion independent of the influence of optical properties in the static tissue matrix

    Discrete Morse Theory and Extended L2 Homology

    Get PDF
    AbstractA brief overview of Forman's discrete Morse theory is presented, from which analogues of the main results of classical Morse theory can be derived for discrete Morse functions, these being functions mapping the set of cells of a CW complex to the real numbers satisfying some combinatorial relations. The discrete analogue of the strong Morse inequality was proved by Forman for finite CW complexes using a Witten deformation technique. This deformation argument is adapted to provide strong Morse inequalities for infinite CW complexes which have a finite cellular domain under the free cellular action of a discrete group. The inequalities derived are analogous to the L2 Morse inequalities of Novikov and Shubin and the asymptotic L2 Morse inequalities of an inexact Morse 1-form as derived by Mathai and Shubin. We also obtain quantitative lower bounds for the Morse numbers whenever the spectrum of the Laplacian contains zero, using the extended category of Farber

    Programming Protocol-Independent Packet Processors

    Full text link
    P4 is a high-level language for programming protocol-independent packet processors. P4 works in conjunction with SDN control protocols like OpenFlow. In its current form, OpenFlow explicitly specifies protocol headers on which it operates. This set has grown from 12 to 41 fields in a few years, increasing the complexity of the specification while still not providing the flexibility to add new headers. In this paper we propose P4 as a strawman proposal for how OpenFlow should evolve in the future. We have three goals: (1) Reconfigurability in the field: Programmers should be able to change the way switches process packets once they are deployed. (2) Protocol independence: Switches should not be tied to any specific network protocols. (3) Target independence: Programmers should be able to describe packet-processing functionality independently of the specifics of the underlying hardware. As an example, we describe how to use P4 to configure a switch to add a new hierarchical label

    Dietary influence on the egg production and larval viability in True Sebae Clownfish Amphiprion sebae Bleeker 1853

    Get PDF
    Broodstock nutrition is one of the most important research areas in aquaculture. In this study, sebae clownfish was used to find out the influence of diet on reproductive performance parameters like egg production, fertilization rate, hatchability, and larval quality. The feeds used were of marine origin such as squid, cuttlefish, deep sea prawn, immature and mature mussel. The diets were analyzed for their proximate composition, amino acids profile, fatty acids profile and astaxanthin. The sub-adult fishes were collected from wild and conditioned prior to experiment. Data were collected after initial three spawning to achieve stability in egg production and quality. The egg production was found to be significantly influenced by diet and those fed cuttlefish meat gave the highest number of eggs per clutch (1520±260 eggs). The fertilization rate and hatchability were found to be unaffected by the tested diets. The highest larval survival (62.3±7%) after 12 days post hatching was obtained for fish groups fed deep sea prawn. The dietary carotenoid content was also found to influence the egg and larval pigmentation. The result also indicates the importance of dispensable amino acids in egg production. The role of protein, lipids, and essential fatty acids in the broodstock diets for sebae clownfish are also discussed
    corecore