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Thermostat for nonequilibrium multiparticle-collision-dynamics simulations
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Multiparticle collision dynamics (MPC), a particle-based mesoscale simulation technique for complex fluid,
is widely employed in nonequilibrium simulations of soft matter systems. To maintain a defined thermodynamic
state, thermalization of the fluid is often required for certain MPC variants. We investigate the influence of three
thermostats on the nonequilibrium properties of a MPC fluid under shear or in Poiseuille flow. In all cases, the local
velocities are scaled by a factor, which is either determined via a local simple scaling approach (LSS), a Monte
Carlo-like procedure (MCS), or by the Maxwell-Boltzmann distribution of kinetic energy (MBS). We find that
the various scaling schemes leave the flow profile unchanged and maintain the local temperature well. The fluid
viscosities extracted from the various simulations are in close agreement. Moreover, the numerically determined
viscosities are in remarkably good agreement with the respective theoretically predicted values. At equilibrium,
the calculation of the dynamic structure factor reveals that the MBS method closely resembles an isothermal
ensemble, whereas the MCS procedure exhibits signatures of an adiabatic system at larger collision-time steps.
Since the velocity distribution of the LSS approach is non-Gaussian, we recommend to apply the MBS thermostat,
which has been shown to produce the correct velocity distribution even under nonequilibrium conditions.
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I. INTRODUCTION

Multiparticle collision dynamics (MPC) is a particle-based
mesoscale simulation technique for fluids which has been
introduced about a decade ago [1–4]. By now, it has been
developed into one of the major simulation techniques for
complex fluids and has been applied to a broad range of soft
matter systems. Examples cover equilibrium colloid [1,3–12]
and polymer [3,4,13–17] solutions and, more importantly,
nonequilibrium systems such as colloids [18–25], polymers
[16,26–35], vesicles [36], and cells [37,38] in flow fields, col-
loids in viscoelastic fluids [39–41], as well as of self-propelled
spheres [42–44], rods [3,45], and other microswimmers
[46–50]. Moreover, extensions have been proposed to fluids
with nonideal equations of state [51] and mixtures [52].

The MPC algorithm consists of two discrete steps, stream-
ing and collision, and shares many features with the direct
simulation Monte Carlo (DSMC) approach [53]. Although
space is discretized into cells to define the multiparticle
collision environment, both the spatial coordinates and the
velocities of the particles are continuous variables. Hence,
the algorithm exhibits unconditional numerical stability and
satisfies an H-theorem [1,4,54].

MPC refers to a class of algorithms, which differ in their
collision rules [4]. In the original version of MPC, denoted as
stochastic rotation dynamics (SRD) [1,55], collisions consist
of a stochastic rotation of the relative velocities of the particles
in a collision cell. Other algorithms assign Maxwellian
distributed random relative velocities to the particles in a
collision cell at every collision step, such that the momentum
of the collision cell is conserved (MPC-AT) [8,19,56]. MPC
defines a discrete-time dynamics which has been shown to
yield the correct long-time hydrodynamic behavior [3,4,57].
A consequence of the discrete dynamics is that the transport
coefficients depend explicitly on the collision-time interval
[2–4,55,58–61], which in turn permits control of fluid
properties.

In many nonequilibrium systems, temperature has to be
controlled to ensure a stationary state. A defined temperature is

inherent in the MPC-AT approach [8,19,56], but an additional
mechanism has to be provided for the MPC-SRD version, since
it conserves energy. Various constant temperature simulation
schemes have been proposed [62–75]; not all of them ensure
that a canonical ensemble is achieved, and not all of them
conserve momentum.

Under equilibrium conditions, momentum can be con-
served by velocity scaling schemes [4,6,65,74,75]. In its
simplest form, velocity scaling keeps the kinetic energy of
a system at the desired value by multiplying the velocities of
all particles by the same factor [75]. This corresponds to an
isokinetic rather that an isothermal ensemble. As far as MPC
is concerned, a local cell-level scaling scheme (LSS) can be
implemented, where a scale factor is determined for every cell
independently. To achieve a canonical distribution of kinetic
energies, more sophisticated cell-level approaches have been
proposed based on a Monte Carlo criterion [6,65,76], which
we denote as Monte Carlo scaling (MCS), or by exploiting the
appropriate distribution of the kinetic energy (� distribution),
denoted as Maxwell-Boltzmann scaling (MBS) [75].

As is well known, under nonequilibrium conditions an
inappropriate thermostat may introduce a bias into systems
with an a priori unknown velocity profile [77]. To prevent
a bias in MPC simulations, the relative particle velocities
with respect to the center-of-mass velocity of a collision cell
are scaled, which yields a profile unbiased thermostat (PUT)
[60,75] and renders a global scaling scheme inappropriate.
However, recent detailed MPC simulation studies with a
particular collision rule indicate a substantial interference of
certain thermostats with the flow field [78]. The comparison
of viscosities, extracted from the parabolic flow profiles of
Poiseuille flows, yields surprisingly large deviations between
the values extracted from simulations and those determined
theoretically. To avoid such an effect, Ref. [78] suggests
excluding the flow and shear directions from thermostatting.
Since, the large deviations are rather unexpected, we perform
nonequilibrium MPC-SRD simulations with the “standard”
three-dimensional collision rule in order to unravel the
underlying cause.
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A suitable thermostat is essential for accurate and reliable
simulation results, and thermostats failing for flow fields like
shear or Poiseuille flow are obviously inadequate for more
complex flows. Hence, studies of the reliability of a thermostat
combined with a particular MPC collision rule are important.
In this article, we characterize the influence of the LSS, MCS,
and MBS thermostats on the velocity profile of simple shear
and Poiseuille flow. Thereby, we determine the viscosity for
various collision times and compare it with the theoretical ex-
pression. As a reference, we also determine the fluid viscosity
at equilibrium via the transverse fluid-velocity autocorrelation
function in Fourier space without any thermostat [57]. We
find very good agreement between the velocity profiles for
the various thermostats. The differences between the relative
viscosities are below 2% and thus agree with each other within
the accuracy of the simulations. The analytically derived
expression of the viscosity of a MPC fluid is based on some
approximations, specifically the molecular-chaos assumption.
Hence, it is not a priory evident to which extent it describes
simulation results. We find a remarkably good agreement
between the viscosity extracted from simulations and the
theoretical expression, which emphasizes the importance of
the theoretical result. Moreover, we calculate the equilibrium
dynamic structure factor of fluids thermalized by the various
thermostats. For systems with temperature controlled by
LSS or MBS, the structure factor lacks a Rayleigh line,
which corresponds to an isothermal ensemble [79,80]. For
systems with a MCS thermostat, a Rayleigh peak appears
for larger collision-time steps, hence, no isothermal system is
simulated.

The article is organized as follows. In Sec. II the model
and simulation approach are introduced. Section III describes
the various thermostats. Results for equilibrium hydrodynamic
fluctuations, specifically transverse velocity autocorrelation
functions and dynamics structure factors, are presented in
Sec. IV. The results of nonequilibrium simulations are pre-
sented in Sec. V, and various implications are discussed in
Sec. VI. Finally, Sec. VII summarizes our findings.

II. MODEL AND METHODS

A. Multiparticle collision dynamics

We consider a MPC fluid of N point particles of mass m.
Without external field, the particles move ballistically during
the streaming step, i.e., their positions r i are updated according
to

r i(t + h) = r i(t) + hvi(t), (1)

where vi(t) is the velocity of particle i at time t and h is the
collision-time step. In the collision step, the simulation box is
partitioned into cubic collision cells of side length a. In the
SRD version of MPC, the relative velocity of each particle,
with respect to the center-of-mass velocity of the particular
cell, is rotated by a fixed angle α around a randomly oriented
axis. Hence, the velocity after a MPC step is

vi(t + h) = vi(t) + [R(α) − E][vi(t) − vcm(t)], (2)

where R(α) is the rotation matrix, E is the unit matrix, and

vcm = 1

Nc

Nc∑
j=1

vj , (3)

is the center-of-mass velocity of the Nc particles contained
in the cell of particle i [1–4]. The random orientation of the
rotation axis is chosen independently at every collision step and
for every cell [75]. To ensure Galilean invariance, a random
shift is performed at every collision step [55]. In a collision
step, mass, momentum, and energy are conserved which leads
to the build-up of correlations in the particle motion and gives
rise to hydrodynamic interactions.

B. Boundary conditions

We typically apply three-dimensional periodic boundary
conditions with a cubic simulation box of side length L and
volume V = L3. In many systems, e.g., in simulations of
Poiseuille flow, solid walls are present, commonly with no-slip
boundary conditions. The discretization into collision cells
requires particular measures to ensure the no-slip condition.
We follow the approach suggested in Ref. [18], which applies
the bounce-back rule, a random shift of the collision lattice
in all spatial directions, and partial filling of surface cells by
phantom particles. For systems with parallel walls, the random
shift perpendicular to the walls is implemented as follows [61].
Without random shift, collision-cell boarders are chosen to
coincide with the respective wall. To enable a random shift,
an additional layer of empty collision cells is added in one
of the walls. In a random shift, the whole collision lattice is
then shifted by a uniformly distributed random displacement
∈ [0,a]. The typically appearing partially occupied cells at
the walls cause a violation of the no-slip boundary condition,
since the average fluid velocity parallel to the surfaces is
no-longer zero in the surface cells [18]. To restore no-slip
boundary conditions, usually a phantom particle is added to
every cell intersected by a wall and occupied by Nsc fluid
particles smaller than the average number of particles 〈Nc〉,
such that the average particle density is restored. However,
this does not completely prevent slip, because the average
center-of-mass position of all particles in a collision cell,
including the phantom particle, which is placed in the center of
the wall-occupied part of the collision cell, does not coincide
with the wall. In order to fully account for the no-slip boundary
condition, we adopt the following modification of the original
approach [61]. To treat a wall cell on the same basis as a cell in
the bulk, i.e., the number of fluid particles satisfies a Poisson
distribution with the average 〈Nc〉, we take fluctuations in the
particle number into account by adding Nsp particles to every
cell partially occupied by a wall such that 〈Nsp + Nsc〉 = 〈Nc〉.
The momentum P of all phantom particles of a cell is taken
from the Maxwell-Boltzmann distribution with the variance
mNspkBT and, at equilibrium, zero average. There are various
ways to determine the number Nsp. For a system with two
parallel walls, we suggest to use the number of fluid particles
in the surface cell intersected by the opposite wall. The average
of the two numbers is equal to 〈Nc〉. Alternatively, 〈Nsp〉 can be
taken from a Poisson distribution with average 〈Nc〉 accounting
for the fact that there are already Nsc particles in the cell. Colli-
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sions are then performed with all the particles in the cells. The
center-of-mass velocity of the particles in a boundary cell is

vcm = 1

Nsc + Nsp

(
Nsc∑
i=1

mvi + P

)
. (4)

Instead of a single phantom-particle momentum and a
single extra collision-lattice layer, an additional collision-cell
layer can be added in every wall and explicitly be filled
with randomly placed phantom particles with Maxwellian
distributed velocities in every collision step. If the layers are
sufficiently large, the fluctuations of the particle number in a
collision cell are close to that of a bulk cell.

Other approaches for no-slip boundary conditions have
been suggested and analyzed [6,7,10,78,81]. Some of them
do not include phantom particles. However, based on our
experience, we consider the approach with phantom particles
as most appropriate for no-slip boundary conditions, which
yields the correct hydrodynamic behavior not only for solid
walls, but also for solid particles immersed in a MPC fluid.

The presence of external fields may require an adaptation
and modification of the boundary conditions to ensure the
no-slip requirement. For simple shear such an adjustment is
described in Ref. [61], and for Poiseuille flow in Ref. [78]. We
will come back to this aspect in Sec. II D.

C. Shear flow

Shear flow is implemented by Lees-Edwards periodic
boundary conditions [62,82], which yields a linear velocity
profile [61]. The shear viscosity η of the fluid follows from
the stress tensor σxy via η = σxy/γ̇ for shear along the x axis
and the gradient direction along the y axis of the Cartesian
reference frame; γ̇ denotes the shear rate. As shown in
Ref. [61], the instantaneous stress of the MPC fluid is given
by

σ i
xy = − 1

V

N∑
i=1

mv̂ix v̂iy − γ̇ h

2V

N∑
i=1

mv2
iy − 1

V h

N∑
i=1

�pixriy,

(5)

hence, σxy = 〈σ i
xy〉. v̂iα , α ∈ {x,y,z}, is the velocity after

streaming, but before collision, whereas viα is the velocity after
collision, but before streaming, and �piα is the momentum
change of particle i during a collision. Here, r i is the position
of the particle in the grid-shifted frame. Note that due to
Lees-Edwards boundary conditions, all particles are inside of
the primary periodic box, and the velocities along the flow
direction are correspondingly adjusted [61].

D. Poiseuille flow

For the Poiseuille flow simulations, we confine the fluid
between two solid walls, which are parallel to the xz plane
of the Cartesian reference frame, and apply periodic boundary
conditions along the x and z axis. Flow is induced by a constant
force mg acting on every fluid particle. Therefore, the particle
velocities and positions are updated according to

v̂ix(t + h) = vix + gh, (6)

r̂ix(t + h) = rix(t) + vix(t)h + 1
2gh2 (7)

along the flow direction. Note that the circumflex indicates
quantities after streaming but before collision. To satisfy the
no-slip boundary condition, we apply the bounce-back rule
during streaming and take into account phantom particles
during collisions. We consider two variants for the calculation
of a phantom-particle momentum. In the simpler version, the
average momentum 〈P〉 is set to zero. However, this implies
a residual slip. Following the proposition for shear flow in
the presence of walls in Ref. [61], we assign a finite mean
velocity to every phantom particle according to its position in
the collision cell relative to the wall-fluid interface. Thereby,
we place a phantom particle in the center of the part of the
collision cell inside a wall. The average velocity itself is
determined by the desired parabolic flow profile. A similar
approach has been adopted in Ref. [78].

E. Viscosity

Analytical expressions for the MPC fluid viscosity have
been derived applying various methods [2–4,55,58–61,83].
In general, the viscosity η = ηk + ηc comprises a kinetic
contribution ηk due to streaming of the fluid particles, and a
collisional contribution ηc. For the latter, an exact expression
can be derived, which is given by

ηc = Nma2

18V h
[1 − cos(α)]

(
1 − 1

〈Nc〉
)

(8)

for 〈Nc〉 � 1 in three dimensions. Here and in the following,
we neglect fluctuations in the particle number in a collision
cell, which is justified for average particle numbers 〈Nc〉 > 5,
since we omit a term of order e−〈Nc〉. Due to correlations in
the particle velocities, the kinetic contribution can only be de-
rived within certain approximations. Applying the molecular
chaos assumption, i.e., velocity correlations between different
particles are neglected, the kinetic contribution is

ηk = NkBT h

2V

{
5〈Nc〉

(〈Nc〉− 1)[2 − cos(α) − cos(2α)]
− 1

}
. (9)

Evidently, the collisional contribution dominates for small
and the kinetic one for large collision-time steps, which
corresponds to a fluidlike behavior in the first case and gaslike
behavior in the second case as expressed by the Schmidt
number [84].

In Ref. [84] and especially in Ref. [85] for two-dimensional
systems, improved analytical expressions are provided for ηk

taking into account velocity correlations. It is important to note
that fluid correlations yield a somewhat larger ηk value than
that predicted by the molecular-chaos assumption.

The total viscosity η = ηk + ηc is evidently dominated by
ηk for h → ∞ and ηc for h → 0. Since ηc is calculated without
any approximation, η provides an exact description for h → 0.
Moreover, the applied molecular chaos assumption applies
well for h → ∞. Hence, η is well described quantitatively by
the theoretical expression in both limits.

F. Parameters

All simulation are performed with the rotation angle
α = 130◦, and the mean number of particles per collision
cell 〈Nc〉 = 10. Length and time are measured in units of
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the collision cell size a and τ =
√

ma2/(kBT ), respectively,
where T is the temperature and kB the Boltzmann constant.
Various collision times between h = 0.1τ and h = 3τ are
considered to cover the collisional-dominated as well as the
streaming-dominated regime. The size of the cubic simulation
box is set to L = 30a if not otherwise stated. For the shear
flow simulation the choose the shear rate γ̇ τ = 10−2, and for
the Poiseuille flow simulations, we set g = 10−3a/τ 2.

For an efficient simulation of the MPC fluid dynamics, we
exploit a graphics processor unit (GPU)-based version of the
simulation code [86].

III. THERMOSTAT

We perform simulations applying the thermostats men-
tioned in the introduction, namely local simple scaling (LSS)
[75], Monte Carlo scaling (MCS) as suggested in Ref. [6],
and Maxwell-Boltzmann scaling (MBS) [75]. In all case, the
relative velocities �vi = vi − vcm of the particles in a collision
cell are scaled by a constant factor ξ , which typically differs for
every cell and collision-time step. Hence, the relative velocities
after collision �v′

i are given by �v′
i = ξ�vi . Since the total

relative momentum of a collision cell is zero, such a scaling
leaves the total momentum of a cell unchanged.

A. Simple scaling

In the simple scaling approach, the scale factor ξ is chosen as

ξ =
√

3(Nc − 1)kBT

2Ek

, (10)

with the kinetic energy of a collision cell

Ek = 1

2

Nc∑
i=1

m�v2
i . (11)

The factor Nc − 1 accounts for the fact that Ek is calculated in
the center-of-mass reference frame of a collision cell. Strictly
speaking, LSS conserves the average kinetic energy rather than
the temperature [75]. This implies that the energy fluctuations
are incompatible with that of an isothermal ensemble, and the
distribution of velocities in a collision cell is not Maxwellian.

B. Monte Carlo scaling

We implement the Monte Carlo scaling method in the version
proposed in Ref. [6], which satisfies detailed balance in
contrast to earlier versions [65]. In brief, a factor ε is randomly
chosen in the interval [0,ζ ] and ξ is set to either 1 + ε or
1/(1 + ε), each with the probability 1/2. The velocity scaling
itself is performed following a Monte Carlo-type criterion,
with the probability pA = min[1,A], where [6,78]

A = ξ 3(Nc−1) exp[−(ξ 2 − 1)Ek/kBT ]. (12)

The choice of ζ ∈ [0.05, 0.3] and the frequency of scaling
determine the relaxation time to approach the desired temper-
ature T . We set ζ = 0.1. The method has been shown to yield
the correct velocity distribution [6] and has successfully been
applied in various simulation studies [6,78,87–89].

C. Maxwell-Boltzmann scaling

In the Maxwell-Boltzmann scaling approach, the known
distribution of the kinetic energy of the MPC ideal-gas particles
is exploited to determine the scale factor [75]. Thereby the
distribution of the kinetic energy is given by (� distribution)

P (Ek) = 1

Ek�(f/2)

(
Ek

kBT

)f/2

exp

(
− Ek

kBT

)
. (13)

Here, f = 3(Nc − 1) is the number of degrees of freedom of
the fluid particles in the considered collision cell, and �(x) is
the gamma function. In the limit f → ∞, the � distribution
turns into a Gaussian function with mean 〈Ek〉 = f kBT /2
and variance f (kBT )2/2. At every collision, a random kinetic
energy Êk is taken from the distribution function (13) for every
collision cell, and the respective scale factor for the velocities
is set to

ξ =
√

Êk/Ek, (14)

with the kinetic energy Ek of Eq. (11). Taking the average of
the kinetic energy after scaling, we obtain

〈Ek〉 = 1

2

Nc∑
i=1

m
〈
�v′2

i

〉 =
〈

ξ 2

2

Nc∑
i=1

m�v2
i

〉
= 〈Êk〉. (15)

Hence, the average of the kinetic energy of a collision cell
is equal to the desired mean of the distribution function (13).
Note that in Ref. [78], a different scale factor is provided,
which may simply be a misprint, otherwise the factor would
not provide the correct average kinetic energy.

As has been shown in Ref. [75], the MBS approach yields
the correct distribution function of the particle velocities at
the collision cell level, even for strong external fields, whereas
LSS fails even at equilibrium.

When phantom particles are taken into account, the MPC
particles next to a wall are thermalized by the phantom
particles. For sufficiently weak (external) fields, this energy
exchange suffices to control the temperature in the whole
system. For strong fields, the energy transport is not fast
enough to ensure the desired temperature over the whole
system [75]. Here, one of the additional thermostating schemes
has to be applied.

IV. RESULTS: HYDRODYNAMIC FLUCTUATIONS

The hydrodynamic properties of a MPC fluid coincide with
those of the linearized fluctuating hydrodynamic equations
for sufficiently large length and time scales [1,3,51,57,58,83].
Hence, we can use hydrodynamic correlation functions, on
the one hand, to extract the fluid transport coefficients from
equilibrium velocity autocorrelation functions, and, on the
other hand, to verify the kind of simulated ensemble.

Within the linearized Navier-Stokes equations [79,80],
the transverse hydrodynamic (shear) modes are independent
of the longitudinal (acoustic, entropy) modes [79]. For an
adiabatic system, i.e., a system in which the energy of the
fluid is locally conserved, the longitudinal modes are coupled.
In particular, the temperature (or entropy) fluctuations are
coupled to the density and longitudinal velocity fluctuations
[79,80]. In contrast, in an isothermal system, temperature
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fluctuations are suppressed and controlled by the (local)
thermostat, which implies a decoupling of the density and
velocity fluctuations from the equation of the temperature
fluctuations. The respective modifications of the transport
properties are reflected in the density autocorrelation function,
e.g., the dynamic structure factor S(k,ω).

In the following two subsections, we will address the trans-
verse velocity correlation function and the density fluctuations
via the dynamic structure factor.

A. Transverse velocity correlation function

The MPC fluid viscosity can be determined by equilibrium
simulations, independent of any thermostat, from the trans-
verse velocity correlation function in Fourier space [54,57,90].
For the considered periodic system, the velocity in k space is
defined as [57,91]

v(k,t) =
N∑

i=1

vi(t)e
ik·r i (t), (16)

with kβ = 2πnβ/L, β ∈ {x,y,z}, nβ ∈ Z, and k 
= 0. From
the linearized hydrodynamic equations [57,79,80,92,93], the
normalized transverse velocity correlation function Cv(k,t) is
obtained, which decays exponential as

Cv(k,t) = 〈vT (k,t) · vT (−k,0)〉
〈vT (k,0)2〉 = e−νk2t , (17)

where ν = η/� is the kinematic viscosity and � the mass
density.

Figure 1 shows examples of autocorrelation functions
for various collision-time steps extracted from simulations
without a thermostat. Evidently, the obtained Cv(t) decay
exponentially. A fit with the exponential function (17) yields
the viscosities listed in Table I. These values are slightly larger
than the theoretical values calculated according to Eqs. (8) and
(9), which is a consequence of the applied approximations in
the derivation of the theoretical expressions.

0 1 2 3 4 5 6

tk
2
/[m/(kBTa

2
)]

1/2

0.1

1

C
v(k

,t)
/C

v(k
,0

)

FIG. 1. (Color online) Transverse velocity autocorrelation func-
tions of a MPC fluid for the collision-time steps h/τ = 0.1, 1.0, 0.2,
and 0.5 (left to right). The k values are k = 2πn/L, with L = 30a

and n = 1, 2, 3, and 4. The fit of the exponential function (17) (dashed
lines) yields the kinematic viscosities presented in Table I.

TABLE I. Kinematic viscosities ν = η/� and their deviations
�ν = (ν − ν th)/ν th × 100% from theoretical values ν th [ν th = νk +
νc, Eqs. (8) and (9)] obtained from the velocity autocorrelation
function (17) and shear-flow simulations for the thermalization
methods: local simple scaling (LSS), Monte Carlo scaling (MCS)
[6], and Maxwell-Boltzmann scaling (MBS) [75]. The simulation box
size is set to L = 60a in the calculation of the VACF for h/τ = 1,2,
and 3.

h/τ 0.1 0.2 0.5 1.0 2.0 3.0

Theory ν th/(a2/τ ) 0.870 0.508 0.407 0.568 1.014 1.486

ν/(a2/τ ) 0.873 0.515 0.409 0.569 1.006 1.484
VACF

�ν/% 0.4 1.3 0.5 0.2 −0.8 −0.1

ν/(a2/τ ) 0.872 0.517 0.411 0.571 1.017 1.492
LSS

�ν/% 0.2 1.7 0.9 0.4 0.4 0.4

ν/(a2/τ ) 0.869 0.515 0.412 0.571 1.016 1.493
MCS

�ν/% −0.1 1.4 1.2 0.4 0.3 0.5

ν/(a2/τ ) 0.871 0.517 0.414 0.573 1.019 1.494
MBS

�ν/% 0.1 1.8 1.5 0.8 0.5 0.5

We performed various simulations applying a thermostat
and calculated Cv(k,t). Within the accuracy of the results, we
did not detect any difference between simulations with and
without thermostat.

For the sake of completeness, we would like to mention
that Fourier transformation of the correlation function Cv(k,t)
in Eq. (17) yields the well-known long-time tail, characteristic
for hydrodynamic correlations [57,94,95]. Further details are
presented in Ref. [57].

B. Dynamic structure factor

The dynamic structure factor is defined as

S(k,ω) = 1

N

∫ ∞

−∞
〈δρ(k,t)δρ(−k,0)〉 e−iωt dt (18)

in terms of the (number) density fluctuations δρ(r,t) = ρ(r,t)
− ρ [16,79,80,85,96], where ρ denotes the mean density and

ρ(k,t) =
N∑

i=1

eik·r i (t). (19)

Explicitly, the normalized dynamic structure factor S̃

(
∫

S̃dω = 1) of an adiabatic system for small k values is given
by [79]

2πS̃(k,ω)

= γ − 1

γ

2DT k2

ω2 + (DT k2)2

+ 1

γ

[
�sk

2

(ω + csk)2 + (�sk2)2
+ �sk

2

(ω − csk)2 + (�sk2)2

]

+ 1

γ
[�s + (γ − 1)DT ]

k

cs

×
[

ω + csk

(ω + csk)2 + (�sk2)2
− ω − csk

(ω − csk)2 + (�sk2)2

]
,

(20)

013310-5



HUANG, VARGHESE, GOMPPER, AND WINKLER PHYSICAL REVIEW E 91, 013310 (2015)

where cs = √
γ kBT /m is the adiabatic velocity of sound, DT

the thermal diffusion coefficient, �s the sound attenuation
factor, and γ the adiabatic index. More definitions and
the relation with the MPC parameters are provided in the
Appendix. The expression for an isothermal system follows
by setting DT = 0 and γ = 1 [96]:

2πS̃(k,ω) = �k

c

[
2ck + ω

(ω + ck)2 + (�k2)2

+ 2ck − ω

(ω − ck)2 + (�k2)2

]
. (21)

Here, c = √
kBT /m denotes the isothermal speed of sound and

� the isothermal sound attenuation factor (see the Appendix).
Note that the structure factor is related to the longitudinal
velocity autocorrelation function via [79,80]

1

N

∫
〈vL(k,t)vL(−k,0)〉e−iωtdt =

(
ω

�|k|
)2

S(k,ω). (22)

This correlation function lacks a Rayleigh line due to the
appearing frequency (ω2) on the right-hand side.

Figures 2 and 3 provide examples of S̃(k,ω) for the collision
times h = 0.1τ and 3.0τ , respectively, and the MBS and MCS
scaling schemes. For LSS, we obtain the identical structure
factors as for MBS within the accuracy of the simulations.
For the short collision-time step (Fig. 2), two Brillouin lines
are present at the frequencies ω ≈ ±ck. No central Rayleigh
line is present, hence, there are no temperature fluctuations.
The simulation result of the MBS thermostat is in very close
agreement with the theoretical prediction, whereas the height
of the Brillouin peaks is smaller for the MCS thermostat, but
the peak positions correspond to those of an isothermal system.

Similarly, for the simulations with h = 3.0τ (Fig. 3), the
Brillouin lines of the MBS thermostat correspond to those of
an isothermal system, although the peak height is somewhat

-0.4 -0.2 0 0.2 0.4

ω/[kBT/(ma
2
)]

1/2

0

2

4

6
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10

S
(k

,ω
)

~

FIG. 2. (Color online) Normalized dynamic structure factors for
h = 0.1τ . The solid line with the smallest peaks (blue) correspond
to the MCS thermostat, the line with the next larger peaks (red) to
the MBS thermostat, and the curve with the most pronounced peaks
(black) is the theoretical structure factor of an isothermal system
[Eq. (21)]. The dashed curve indicates the theoretical structure factor
of an adiabatic system [Eq. (20)]. The system size is L/a = 30.
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FIG. 3. (Color online) Normalized dynamic structure factors for
h = 3.0τ . The solid line with the smallest peaks (blue) correspond
to the MCS thermostat, the line with the next larger peaks (red) to
the MBS thermostat, and the curve with the most pronounced peaks
(black) is the theoretical structure factor of an isothermal system
[Eq. (21)]. The dashed curve indicates the theoretical structure factor
of an adiabatic system [Eq. (20)]. The system size is L/a = 30.

smaller than that of an isothermal system. In contrast, the
structure factor for the MCS thermostat is close to the
theoretical expression of an adibatic system. The Brillouin
peaks shift to the frequencies ω ≈ ±√

γ ck, corresponding
to adibatic sound propagation. More importantly, there is a
central Rayleigh line.

Thus, the MCS thermostat at large collision-time steps is not
reproducing an isothermal but rather an adiabatic system. This
may not necessarily be a problem for temperature control, since
the Monte Carlo procedure approaches the desired canonical
velocity distribution in the limit of a large number of attempts;
however, the temperature fluctuations are not correct locally.
In addition, typically collision-time steps h < 0.2τ are used to
simulate fluids. Here, a nearly isothermal system is achieved
for MCS.

The deviation between the theoretical structure factor of an
isothermal system and the simulation data for MCS at h =
0.1τ and MBS at h = 3.0τ , respectively, indicates that neither
method controls temperature perfectly locally for these time
steps. We attribute the deviation from the isothermal dynamic
structure factor to streaming of the MPC particles. For the MBS
thermostat and the collision-time step h = 0.1τ , there is very
little energy transport during streaming, and thus, the system
closely resembles an isothermal ensemble. However, for h =
3.0τ , there is a considerable energy transfer to nearby collision
cells in the streaming step, which implies nonisothermal
fluctuations. In case of the MCS method, velocity scaling
occurs with a certain probability only, which leads to large
displacements of particles without real temperature control.
This is particularly pronounced for h = 3.0τ , where heat is
transferred over large distances during streaming and gives rise
to adiabatic rather than isothermal fluctuations. The crossover
from isothermal to adiabatic density fluctuations has been
addressed in Ref. [96].
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We finally would like to emphasize that the dynamic
structure factor for systems with the MCS thermostat depends
on the parameter ζ . Simulations with the “extreme” values
ζ = 0.05 and 0.3 lead to slight shifts of the Brillouin lines and
variation in the peak heights. However, for h = 3.0τ , there is
always a pronounced Rayleigh peak.

V. RESULTS: NONEQUILIBRIUM SIMULATIONS

We determine the fluid viscosity via nonequilibrium simula-
tions in order to demonstrate that the viscosity is independent
of the thermostat and, moreover, that the thermostat is not
interfering with the flow.

A. Shear flow

We perform shear-flow simulations for various collision
times and the LSS, MCS, and MBS thermostat. In all cases,
we obtain a linear velocity profile, in agreement with the
theoretical expectation. From the stress tensor values, we
calculate the viscosities listed in Table I. The viscosities
attained by the various thermostats are in close agreement with
each other and are in remarkable agreement with the theoretical
prediction. As expected, the simulation values are typically
slightly larger than the theoretically determined viscosities.
However, they agree within about 2%. The largest deviation
appears for h = 0.2τ . This supports our expectation that the
theoretically derived expression for the viscosity agrees well
with simulation results for larger and smaller collision-time
steps. The agreement between the viscosities extracted from
simulations is even better; the relative error is below 1%.

B. Poiseuille flow

Figure 4 shows velocity profiles for a force-driven MPC
fluid confined between hard walls thermalized by the LSS,
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FIG. 4. (Color online) Poiseuille-flow velocity profiles of simu-
lations with nonzero average phantom-particle momenta, i.e., no-slip
boundary conditions, for the simple scaling (LSS) (short-dashed, red),
the Monte Carlo scaling (MCS) (dotted, green), and the Maxwell-
Boltzmann (MBS) (dashed, blue) thermostat. The parabolic velocity
profiles with the theoretically determined viscosities (cf. Table I) and
zero slip length are shown by solid lines (black). The collision-time
steps are h/τ = 1.0, 0.1, and 3.0 (top to bottom).
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FIG. 5. (Color online) Velocity profiles of the Poiseuille flow
with residual slip (upper curve) and without slip (bottom curve) by
assigning a finite (negative) velocity to phantom particles. The time
step is h = 0.1τ . The inset shows the profiles close to the solid wall
at y = 0. The dashed line indicates the fit of the velocity profile (23)
with finite slip length.

MCS, or MBS method, and various collision-time steps. Here,
the average momentum of a phantom particle in a wall collision
cell is determined by the desired parabolic velocity profile (cf.
Sec. II D). As displayed in the figure, this choice yields a zero
fluid velocity at the surface (see also Fig. 5). Independent of the
applied thermostat, the fluid particle temperature and density
across the channel are constant. For every collision-time step,
we find good agreement between the velocity profiles of the
various thermostats. Moreover, the profiles agree well with
the parabola with the theoretically determined viscosities.
The actually determined viscosities and their deviations from
the theoretical values are summarized in Table II. Here the
simulation data are fitted by the parabola

vx(y) = g

2ν
(y + ls)(L + ls − y), (23)

which yields the slip length ls and the kinematic viscosity ν.
As expected, we find a zero slip length in simulations where
the phantom-particle momentum 〈P〉 
= 0. There are only
very minor differences between the viscosities obtained for
the various thermostats, and the viscosities themselves agree
well with the theoretical values. Thereby, the numerical values
are typically somewhat larger, up to approximately 2%. The
shear-flow simulations show the same trend.

Figure 5 compares velocity profiles for no-slip boundary
conditions, where 〈P〉 
= 0, with results with residual slip,
where we set 〈P〉 = 0 (cf. Sec. II D). There is a finite slip for
〈P〉 = 0, which implies a shift of the whole velocity profile to
larger velocities. A fit by the profile (23) yields the slip length
ls and the viscosity νs . The respective values are summarized
in Table II. In general, the profiles are excellently fitted by
Eq. (23). Despite the differences of the profiles, the viscosities
are in close agreement. Since a finite residual slip does not
alter the viscosity, a fit with a finite slip length yields a very
accurate estimation of the viscosity. However, a fit with zero
slip length provides a somewhat different viscosity. Thereby,
the overall numerical profile is not very well reproduced by
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TABLE II. Kinematic viscosities ν and their deviations �ν

with respect to theoretical values extracted from Poiseuille flow
simulations by fitting a parabola to the flow profile for the various
thermostats. ls is the slip length and νs the kinematic viscosity for
simulations, where the average phantom-particle momentum is set
to zero. The other viscosities are obtain form simulations with a
profile-matched phantom-particle momentum.

h/τ 0.1 1.0 3.0

ν/(a2/τ ) 0.886 0.570 1.483
�ν/% 1.9 0.4 −0.2

LSS νs/(a2/τ ) 0.888 0.572 1.486
ls/a 0.167 0.054 0.079

�νs/% 2.0 0.6 0.0

ν/(a2/τ ) 0.869 0.570 1.483
�ν/% −0.1 0.2 −0.2

MCS νs/(a2/τ ) 0.869 0.571 1.482
ls/a 0.170 0.057 0.093

�νs/% −0.1 0.4 −0.3

ν/(a2/τ ) 0.882 0.573 1.485
�ν/% 1.4 0.7 −0.1

MBS νs/(a2/τ ) 0.882 0.574 1.488
ls/a 0.172 0.057 0.090

�νs/% 1.4 0.9 0.1

the theoretical parabola. Inclusion of a slip length improves
fitting considerably.

VI. DISCUSSION

The viscosity of the MPC fluid is dominated by contri-
butions from collisions at small, and by kinetic contributions
(streaming) at large collision-time steps. This suggests that a
random shift of the collision lattice can be omitted at large
collision-time steps [10,18,78], and partially filled collision
cells would not matter anymore. However, lack of a random
shift causes various ambiguities. Without random shift and
phantom particles, there are only bounce-back interactions
during streaming with walls, which does not prevent slip
strictly, because the average velocity at the wall will never
be zero during a MPC dynamics step. More severely, the
induced velocity profile is no longer smooth on the length
scale of a collision cell. As shown in Fig. 6, correlations on
the cell level lead to essentially constant average velocities
of the particles in a collision cell and, hence, to a steplike
overall profile. Note that we calculate the velocity profile
after a collision. The steps appear for all collision schemes
with conserved linear momentum, since the stationary state
distribution of the relative velocities �vi is Gaussian with
zero mean. Hence, the average velocity of a particle in a cell
after collision is 〈vi〉 = 〈vcm〉. The calculation of the velocities
after streaming yields a smoother profile, in particular for
very large collision-time steps. If only the velocity of the
cell center would be considered, i.e., the bin width for the
calculation of the profile is set equal to the size of the collision
cell, the steps are invisible and a smooth profile is obtained.
As revealed by the in-depth studies of Ref. [78], lack or
presence of a random shift leads to slightly different velocity
profiles, with a higher viscosity in the presence of a random
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FIG. 6. (Color online) Velocity profiles for the Monte Carlo
scaling (MCS) approach (top, green) and the Maxwell-Boltzmann
scaling (MBS) method (bottom, blue) for the collision-time step
h = 3.0τ . The result for the LSS approach is indistinguishable from
the MBS result. No random shift is applied. The smooth solid
line (black) is the theoretical parabolic velocity profile with the
analytically determined viscosity presented in Table I.

shift. The difference for the studied time step, however, is
extremely small and is expected to be even smaller for larger
h. Importantly, the difference between the velocity profiles is
not related to partially filled collision cells, but only to the shift
of the collision lattice. To avoid ambiguities in the calculation
of the velocity profile (after streaming versus after collision),
we recommend to use a random shift of the collision lattice
for any time step. This yields a unique viscosity.

VII. SUMMARY AND CONCLUSIONS

We have presented a detailed evaluation of various thermo-
stating approaches for nonequilibrium multiparticle collision
dynamics simulations. The purpose of our studies is twofold.
On the one hand, we want to shed light on the accuracy with
which the nonequilibrium aspects of the fluid are reproduced
or are perturbed by a particular thermostat. On the other
hand, we intend to clarify whether there are deviations, and if
so, how large, between the analytically determined viscosity
of the MPC fluid and that extracted from simulation. For
this purpose, we have determined the fluid viscosities for
various MPC collision-time steps by equilibrium simulations
via the transverse fluid velocity autocorrelation function and by
nonequilibrium simulations calculating the stress tensor under
simple shear, as well as the velocity profile for a Poiseuille flow.
In the nonequilibrium simulations, we control temperature on
the cell level by three different methods: local simple scaling
(LSS), a Monte Carlo-like scheme (MCS) [78], and by the
Maxwell-Boltzmann scaling (MBS) approach [75].

The calculation of the dynamic structure factor with the
equilibrium fluid density fluctuations of the system ther-
malized by the MCS method yields, at first unexpected, a
pronounced Rayleigh peak for collision-time steps h/τ > 1.
Hence, in such a system thermal fluctuations play a major role
and it is closer to an isoentropic rather than an isothermal
ensemble. The correct average asymptotic temperature is

013310-8



THERMOSTAT FOR NONEQUILIBRIUM MULTIPARTICLE- . . . PHYSICAL REVIEW E 91, 013310 (2015)

assumed for many Monte Carlo steps, however, the fluctuations
do not correspond to an isothermal ensemble. This implies
different transport coefficients compared to an strict isothermal
system; they may neither correspond to an adiabatic nor to an
isothermal system.

However, our simulations suggest that every employed
thermostat leaves the viscosity unchanged, or at least affects
it to such small extent that it is difficult to detect by the
flow profiles or thermodynamic properties. Hence, we find
only minor differences between the viscosities obtained by the
various approaches. Thus, we consider all of them suitable
for nonequilibrium simulations for weakly perturbed systems.
The drawback of the LSS method, however, is that the
velocity distribution of the fluid particles is non-Gaussian,
which leads to artifacts in the density and even temperature
distribution at larger field strengths. As discussed in Ref. [75],
the MBS method provides accurate results even at large
fields.

Looking at the agreement between the analytically pre-
dicted viscosities with those determined by simulations, we
find slightly larger numerical values in the range 0.2�h/τ<1
than theoretically predicted (cf. Table I). All thermostats
yield consistently slightly larger viscosities, with some small
variations.

We have only considered the SRD variant of MPC, where
fluid velocities are rotated around a randomly oriented axis. In
Ref. [78], other collision rules have been applied for Poiseuille
flow simulations, in particular rotations around the Cartesian
axes only. Simulations exploiting the MPC-AT method yield
velocity profiles, which agree very well with those determined
with the theoretical viscosity for large collision-time steps.
However, simulations applying rotations of the relative veloc-
ities around one of the randomly selected Cartesian axis yields
considerable deviations between simulation and theoretical
results. Applying the same rule, we also find larger deviations
than those found by the above applied collision rule. Hence, the
collision rule affects the fluid behavior under nonequilibrium
conditions. In the axis-rotation scheme, there seem to be
considerable correlations of the fluid particles in a collision
cell, more than in the other algorithms.

Our simulations reveal a major effect of the violation of
Galilean invariance on the flow properties in the form of
stairlike profiles, for both, simple shear and Poiseuille flow.
The effect as such is independent of the collision-time step.
Signatures of such steps have also been reported in Ref. [78].
As we have shown, the steps completely disappear when
a random shift of the collision lattice is applied. Thus, we

strongly recommend to apply a random shift of the collision
lattice even for large collision-time steps, although physically
relevant fluid properties can only be expected on length scales
larger than a collision cell.

Moreover, the random shift is intimately connected with
the boundary condition. A no-slip boundary condition is
best fulfilled by applying a random shift and inclusion of
phantom particles [10,18], for both, stationary surfaces as
well as dissolved solid bodies [8,97]. Further investigations
of the boundary conditions on the dynamics of colloids are
currently under way, with emphasis on the differences in
colloid dynamics between slip and no-slip boundaries.

APPENDIX: TRANSPORT COEFFICIENTS

Here, the various transport coefficients defined in Sec. IV
are given in terms of the MPC-SRD fluid parameters [57,85].
We assume that 〈Nc〉 � 1, such that 〈Nc〉 − 1 + e−〈Nc〉 ≈
〈Nc〉 − 1.

The thermal diffusion coefficient DT is given by

DT = Dc
T + Dk

T , (A1)

with

Dc
T = a2

15h〈Nc〉
(

1 − 1

〈Nc〉
)

(1 − cos α) , (A2)

Dk
T = kBT h

2m

[
3

1 − cos α
− 1 + 6

〈Nc〉
(

4

5
− 1

4

1

sin2 α/2

)]
.

(A3)

The specific heat capacities are

cv = 3kB

2m
, cp = cv + kB

m
, γ = cp

cv

= 5

3
. (A4)

The sound attenuation factor of an adiabatic system is defined
as

�s = 1
2 [DT (γ − 1) + ν̃], (A5)

with

ν̃ = 4
3νk + νc = 4

3ν − 1
3νc, (A6)

and the kinematic viscosity ν = η/� = νk + νc. The viscosi-
ties ηc and ηk are defined in Eqs. (8) and (9).

For an isothermal fluid, the sound attenuation factor is

� = 1
2 ν̃. (A7)
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