1,780 research outputs found

    Application of Enriched Fraction of Seabuckthorn Leaf Extract as Antimicrobial Finish on Technical Textile

    Get PDF
    Flavonoid-rich fraction (FRF) from Seabuckthorn leaves extract was prepared by acid hydrolysis process. Total flavonoid content of Seabuckthorn leaves extract and FRF estimated as rutin equivalent was found to be 116.98±3.06 and 277.14 ± 6.78 mg/g of extract/FRF respectively. Its major constituents myrcetin, quercetin, kaempferol and isorhamnetin, were determined by reverse phase high performance liquid chromatography (RP-HPLC). Aramid (NomexIIIA) fabric was treated with triethylene tetramine to increase the wicking height of the fabric for better uptake of FRF. Then, FRF was coated using citric acid as cross linking agent on to aramid fabric by pad-dry-cure method for improved wash durability. FRF coated fabric was characterised using Universal attenuated total internal reflection Fourier Transform Infrared spectroscopy. Effect of FRF coating on flammability property of coated fabric was estimated using flammability tester. There was no significant difference in the char length of the FRF coated fabric and control samples. Antimicrobial activity of the FRF coated fabric was assessed by both qualitative (agar diffusion method; AATCC 147-2001) and quantitative (percentage reduction test; (AATCC 100-2001) methods using test organisms. The zone of inhibition by agar diffusion method for E. coli and S. aureus was found to be 12.4 mm and 16.7 mm respectively. Quantitative assessment by percentage reduction test showed a reduction percentage of 96.00% and 93.00% for S. aureus and E. coli, respectively. The results of the above study indicate FRF as a valuable ingredient for the development of antimicrobial textiles

    Three-Dimensional Simulations of Massive Stars: II. Age Dependence

    Full text link
    We present 3D full star simulations, reaching up to 90% of the total stellar radius, for three 7M⊙7M_\odot stars of different ages (ZAMS, midMS and TAMS). A comparison with several theoretical prescriptions shows the generation spectra for all three ages are dominated by convective plumes. Two distinct overshooting layers are observed, with most plumes stopped within the layer situated directly above the convective boundary (CB); overshooting to the second, deeper layer becomes increasingly more infrequent with stellar age. Internal gravity wave (IGW) propagation is significantly impacted in the midMS and TAMS models as a result of some IGWs getting trapped within their Brunt-V\"{a}is\"{a}l\"{a} frequency spikes. A fundamental change in the wave structure across radius is also observed, driven by the effect of density stratification on IGW propagation causing waves to become evanescent within the radiative zone, with older stars being affected more strongly. We find that the steepness of the frequency spectrum at the surface increases from ZAMS to the older models, with older stars also showing more modes in their spectra.Comment: 24 pages, 14 figures / Accepted at Ap

    High prevalence of functional vitamin deficiencies in a psychogeriatric ward

    Get PDF
    Choline (Ch) is involved in relevant neurochemical processes. It is the precursor and metabolite of acetylcholine (ACh). It plays a role in single-carbon metabolism and is an essential component of different membrane phospholipids (PLs). These PLs are structural components of cell membranes, and involved in intraneuronal signal transduction. An increased ACh release was found after Ch treatment in rat corpus striatum slices. An in vivo proton magnetic resonance study has analyzed Ch ingestion effect. This work which represents the first non invasive study for exploring in vivo human brain neurochemistry showed the transfer of an oral Ch load in the brain of normal volunteers. These results were not confirmed by other in vivo studies. Cellular membranes breakdown is suggested as a feature of neurodegeneration in acute (stroke) and chronic (Alzheimer’s and vascular dementias) brain disorders. The effects of exogenous CCPLs on different brain areas were largely studied. Our group has assessed the influence of treatment with the CCPL, choline alphoscerate (GPC) on brain cholinergic neurotransmission markers in an animal model of brain vascular injury. A neuroprotective effect of GPC alone or in association with acetylcholinesterase inhibitor, galantamine was found. These results suggest that GPC could stimulate the expression of vesicular ACh transporter and Ch transporter primarily in areas involved in cognitive processes. These cholinergic markers could represent an appropriate mean to investigate brain cholinergic pathways. In the lack of novel therapeutic strategies, safe compounds developed since a long time such as the CCPLs could have still a place in pharmacotherapy and would merit to be investigated by new clinical studies

    Complementary Metagenomic Approaches Improve Reconstruction of Microbial Diversity in a Forest Soil

    Get PDF
    Soil ecosystems harbor diverse microorganisms and yet remain only partially characterized as neither single-cell sequencing nor whole-community sequencing offers a complete picture of these complex communities. Thus, the genetic and metabolic potential of this “uncultivated majority” remains underexplored. To address these challenges, we applied a pooled-cell-sorting-based mini-metagenomics approach and compared the results to bulk metagenomics. Informatic binning of these data produced 200 mini-metagenome assembled genomes (sorted-MAGs) and 29 bulk metagenome assembled genomes (MAGs). The sorted and bulk MAGs increased the known phylogenetic diversity of soil taxa by 7.2% with respect to the Joint Genome Institute IMG/M database and showed clade-specific sequence recruitment patterns across diverse terrestrial soil metagenomes. Additionally, sorted-MAGs expanded the rare biosphere not captured through MAGs from bulk sequences, exemplified through phylogenetic and functional analyses of members of the phylum Bacteroidetes. Analysis of 67 Bacteroidetes sorted-MAGs showed conserved patterns of carbon metabolism across four clades. These results indicate that mini-metagenomics enables genome-resolved investigation of predicted metabolism and demonstrates the utility of combining metagenomics methods to tap into the diversity of heterogeneous microbial assemblages. IMPORTANCE Microbial ecologists have historically used cultivation-based approaches as well as amplicon sequencing and shotgun metagenomics to characterize microbial diversity in soil. However, challenges persist in the study of microbial diversity, including the recalcitrance of the majority of microorganisms to laboratory cultivation and limited sequence assembly from highly complex samples. The uncultivated majority thus remains a reservoir of untapped genetic diversity. To address some of the challenges associated with bulk metagenomics as well as low throughput of single-cell genomics, we applied flow cytometry-enabled mini-metagenomics to capture expanded microbial diversity from forest soil and compare it to soil bulk metagenomics. Our resulting data from this pooled-cell sorting approach combined with bulk metagenomics revealed increased phylogenetic diversity through novel soil taxa and rare biosphere members. In-depth analysis of genomes within the highly represented Bacteroidetes phylum provided insights into conserved and clade-specific patterns of carbon metabolism

    Nematic liquid crystal alignment on chemical patterns

    Get PDF
    Patterned Self-Assembled Monolayers (SAMs) promoting both homeotropic and planar degenerate alignment of 6CB and 9CB in their nematic phase, were created using microcontact printing of functionalised organothiols on gold films. The effects of a range of different pattern geometries and sizes were investigated, including stripes, circles and checkerboards. EvanescentWave Ellipsometry was used to study the orientation of the liquid crystal (LC) on these patterned surfaces during the isotropic-nematic phase transition. Pretransitional growth of a homeotropic layer was observed on 1 Âčm homeotropic aligning stripes, followed by a homeotropic mono-domain state prior to the bulk phase transition. Accompanying Monte-Carlo simulations of LCs aligned on nano-patterned surfaces were also performed. These simulations also showed the presence of the homeotropic mono-domain state prior to the transition.</p

    DNA Suspension Arrays: Silencing Discrete Artifacts for High-Sensitivity Applications

    Get PDF
    Detection of low frequency single nucleotide polymorphisms (SNPs) has important implications in early screening for tumorgenesis, genetic disorders and pathogen drug resistance. Nucleic acid arrays are a powerful tool for genome-scale SNP analysis, but detection of low-frequency SNPs in a mixed population on an array is problematic. We demonstrate a model assay for HIV-1 drug resistance mutations, wherein ligase discrimination products are collected on a suspension array. In developing this system, we discovered that signal from multiple polymorphisms was obscured by two discrete hybridization artifacts. Specifically: 1) tethering of unligated probes on the template DNA elicited false signal and 2) unpredictable probe secondary structures impaired probe capture and suppressed legitimate signal from the array. Two sets of oligonucleotides were used to disrupt these structures; one to displace unligated reporter labels from the bead-bound species and another to occupy sequences which interfered with array hybridization. This artifact silencing system resulted in a mean 21-fold increased sensitivity for 29 minority variants of 17 codons in our model assay for mutations most commonly associated with HIV-1 drug resistance. Furthermore, since the artifacts we characterized are not unique to our system, their specific inhibition might improve the quality of data from solid-state microarrays as well as from the growing number of multiple analyte suspension arrays relying on sequence-specific nucleic acid target capture

    Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer.

    Get PDF
    Although targeted therapies often elicit profound initial patient responses, these effects are transient due to residual disease leading to acquired resistance. How tumors transition between drug responsiveness, tolerance and resistance, especially in the absence of preexisting subclones, remains unclear. In epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells, we demonstrate that residual disease and acquired resistance in response to EGFR inhibitors requires Aurora kinase A (AURKA) activity. Nongenetic resistance through the activation of AURKA by its coactivator TPX2 emerges in response to chronic EGFR inhibition where it mitigates drug-induced apoptosis. Aurora kinase inhibitors suppress this adaptive survival program, increasing the magnitude and duration of EGFR inhibitor response in preclinical models. Treatment-induced activation of AURKA is associated with resistance to EGFR inhibitors in vitro, in vivo and in most individuals with EGFR-mutant lung adenocarcinoma. These findings delineate a molecular path whereby drug resistance emerges from drug-tolerant cells and unveils a synthetic lethal strategy for enhancing responses to EGFR inhibitors by suppressing AURKA-driven residual disease and acquired resistance

    GA101 (obinutuzumab) monocLonal Antibody as Consolidation Therapy In CLL (GALACTIC) trial: study protocol for a phase II/III randomised controlled trial

    Get PDF
    Background: Chronic lymphocytic leukaemia (CLL) is the most common adult leukaemia. Achieving minimal residual disease (MRD) negativity in CLL is an independent predictor of survival even with a variety of different treatment approaches and regardless of the line of therapy. Methods/design: GA101 (obinutuzumab) monocLonal Antibody as Consolidation Therapy In CLL (GALACTIC) is a seamless phase II/III, multi-centre, randomised, controlled, open, parallel-group trial for patients with CLL who have recently responded to chemotherapy. Participants will be randomised to receive either obinutuzumab (GA-101) consolidation or no treatment (as is standard). The phase II trial will assess safety and short-term efficacy in order to advise on continuation to a phase III trial. The primary objective for phase III is to assess the effect of consolidation therapy on progression-free survival (PFS). One hundred eighty-eight participants are planned to be recruited from forty research centres in the United Kingdom. Discussion: There is evidence that achieving MRD eradication with alemtuzumab consolidation is associated with improvements in survival and time to progression. This trial will assess whether obinutuzumab is safe in a consolidation setting and effective at eradicating MRD and improving PFS. Trial registration: ISRCTN, 64035629. Registered on 12 January 2015. EudraCT, 2014-000880-42. Registered on 12 November 2014
    • 

    corecore