5,944 research outputs found
High bubble concentrations produced by ultrasounds in binary mixtures
7th Meeting of the European‐Society‐of‐Sonochemistry, BIARRITZ GUETHARY, FRANCE, MAY 14‐18, 2000International audienceIt was discovered that simultaneous insonification and air blowing of different aqueous binary solutions such as water/sodium‐dodecyl‐sulphate (SDS), water/methanol or water/potassium‐sulphate yields a very concentrated bubble cloud invading the whole vessel in a few seconds. After the end of insonification, this cloudiness remained in the solution for about 1 min. The phenomenon was investigated by computer‐treatment of solution pictures recorded every second after the end of insonification. Turbidity appeared to increase with ultrasound power, and also with SDS concentration. During the disappearance of the cloud, a turbidity front appeared rising and spreading upward. This front was studied in the characteristic plane and interpreted as a spatial segregation of different bubble sizes rising with different terminal velocities. The bubble sizes involved were estimated to about 10 mum. Adsorption of surface active species are invoked to explain the cloud formation and its abnormally slow disappearance, but the occurrence of the phenomenon for potassium‐sulphate salt remains unexplained
Seasonal time-series imputation of gap missing algorithm (STIGMA)
summary:This work presents a new approach for the imputation of missing data in weather time-series from a seasonal pattern; the seasonal time-series imputation of gap missing algorithm (STIGMA). The algorithm takes advantage from a seasonal pattern for the imputation of unknown data by averaging available data. We test the algorithm using data measured every minutes over a period of days during the year 2010; the variables include global irradiance, diffuse irradiance, ultraviolet irradiance, and temperature, arranged in a matrix of dimensions rows for data points over time and columns for weather variables. The particularity of this work is that the algorithm is well-suited for the imputation of values when the missing data are presented continuously and in seasonal patterns. The algorithm employs a date-time index to collect available data for the imputation of missing data, repeating the process until all missing values are calculated. The tests are performed by removing , , , , , and of the available data, and the results are compared to autoregressive models. The proposed algorithm has been successfully tested with a maximum of contiguous missing values that account for consecutive days of a single month; this dataset is a portion of all the missing values when the time-series lacks of all data. The metrics to measure the performance of the algorithms are root-mean-square error (RMSE) and the coefficient of determination (). The results indicate that the proposed algorithm outperforms autoregressive models while preserving the seasonal behavior of the time-series. The STIGMA is also tested with non-weather time-series of beer sales and number of air passengers per month, which also have a cyclical pattern, and the results show the precise imputation of data
Particle Swarm Optimization Algorithm with a Bio-Inspired Aging Model
A Particle Swarm Optimization with a Bio-inspired Aging Model (BAM-PSO) algorithm is proposed to alleviate the premature convergence problem of other PSO algorithms. Each particle within the swarm is subjected to aging based on the age-related changes observed in immune system cells. The proposed algorithm is tested with several popular and well-established benchmark functions and its performance is compared to other evolutionary algorithms in both low and high dimensional scenarios. Simulation results reveal that at the cost of computational time, the proposed algorithm has the potential to solve the premature convergence problem that affects PSO-based algorithms; showing good results for both low and high dimensional problems. This work suggests that aging mechanisms do have further implications in computational intelligence
Search for very-high-energy emission from Gamma-ray Bursts using the first 18 months of data from the HAWC Gamma-ray Observatory
The High Altitude Water Cherenkov (HAWC) Gamma-ray Observatory is an
extensive air shower detector operating in central Mexico, which has recently
completed its first two years of full operations. If for a burst like GRB
130427A at a redshift of 0.34 and a high-energy component following a power law
with index -1.66, the high-energy component is extended to higher energies with
no cut-off other than from extragalactic background light attenuation, HAWC
would observe gamma rays with a peak energy of 300 GeV. This paper
reports the results of HAWC observations of 64 gamma-ray bursts (GRBs) detected
by and , including three GRBs that were also
detected by the Large Area Telescope (-LAT). An ON/OFF analysis
method is employed, searching on the time scale given by the observed light
curve at keV-MeV energies and also on extended time scales. For all GRBs and
time scales, no statistically significant excess of counts is found and upper
limits on the number of gamma rays and the gamma-ray flux are calculated. GRB
170206A, the third brightest short GRB detected by the Gamma-ray Burst Monitor
on board the satellite (-GBM) and also
detected by the LAT, occurred very close to zenith. The LAT measurements can
neither exclude the presence of a synchrotron self-Compton (SSC) component nor
constrain its spectrum. Instead, the HAWC upper limits constrain the expected
cut-off in an additional high-energy component to be less than
for reasonable assumptions about the energetics and redshift of the burst.Comment: 19 pages, 6 figures, published in Ap
Aflatoxin Exposure during Early Life Is Associated with Differential DNA Methylation in Two-Year-Old Gambian Children
Background: DNA methylation is an epigenetic control mechanism that may be altered by environmental exposures. We have previously reported that in utero exposure to the mycotoxin and liver carcinogen aflatoxin B1 from the maternal diet, as measured using biomarkers in the mothers’ blood, was associated with differential DNA methylation in white blood cells of 6-month-old infants from The Gambia. Methods: Here we examined aflatoxin B1-associated differential DNA methylation in white blood cells of 24-month-old children from the same population (n = 244), in relation to the child’s dietary exposure assessed using aflatoxin albumin biomarkers in blood samples collected at 6, 12 and 18 months of age. HM450 BeadChip arrays were used to assess DNA methylation, with data compared to aflatoxin albumin adduct levels using two approaches; a continuous model comparing aflatoxin adducts measured in samples collected at 18 months to DNA methylation at 24 months, and a categorical time-dose model that took into account aflatoxin adduct levels at 6, 12 and 18 months, for comparison to DNA methylation at 24 months. Results: Geometric mean (95% confidence intervals) for aflatoxin albumin levels were 3.78 (3.29, 4.34) at 6 months, 25.1 (21.67, 29.13) at 12 months and 49.48 (43.34, 56.49) at 18 months of age. A number of differentially methylated CpG positions and regions were associated with aflatoxin exposure, some of which affected gene expression. Pathway analysis highlighted effects on genes involved with with inflammatory, signalling and growth pathways. Conclusions: This study provides further evidence that exposure to aflatoxin in early childhood may impact on DNA methylation
All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV
We report on the measurement of the all-particle cosmic ray energy spectrum
with the High Altitude Water Cherenkov (HAWC) Observatory in the energy range
10 to 500 TeV. HAWC is a ground based air-shower array deployed on the slopes
of Volcan Sierra Negra in the state of Puebla, Mexico, and is sensitive to
gamma rays and cosmic rays at TeV energies. The data used in this work were
taken from 234 days between June 2016 to February 2017. The primary cosmic-ray
energy is determined with a maximum likelihood approach using the particle
density as a function of distance to the shower core. Introducing quality cuts
to isolate events with shower cores landing on the array, the reconstructed
energy distribution is unfolded iteratively. The measured all-particle spectrum
is consistent with a broken power law with an index of prior to
a break at ) TeV, followed by an index of . The
spectrum also respresents a single measurement that spans the energy range
between direct detection and ground based experiments. As a verification of the
detector response, the energy scale and angular resolution are validated by
observation of the cosmic ray Moon shadow's dependence on energy.Comment: 16 pages, 11 figures, 4 tables, submission to Physical Review
Constraining the Ratio in TeV Cosmic Rays with Observations of the Moon Shadow by HAWC
An indirect measurement of the antiproton flux in cosmic rays is possible as
the particles undergo deflection by the geomagnetic field. This effect can be
measured by studying the deficit in the flux, or shadow, created by the Moon as
it absorbs cosmic rays that are headed towards the Earth. The shadow is
displaced from the actual position of the Moon due to geomagnetic deflection,
which is a function of the energy and charge of the cosmic rays. The
displacement provides a natural tool for momentum/charge discrimination that
can be used to study the composition of cosmic rays. Using 33 months of data
comprising more than 80 billion cosmic rays measured by the High Altitude Water
Cherenkov (HAWC) observatory, we have analyzed the Moon shadow to search for
TeV antiprotons in cosmic rays. We present our first upper limits on the
fraction, which in the absence of any direct measurements, provide
the tightest available constraints of on the antiproton fraction for
energies between 1 and 10 TeV.Comment: 10 pages, 5 figures. Accepted by Physical Review
- …