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Abstract

A Particle Swarm Optimization with a Bio-inspired Aging Model (BAM-PSO) algorithm
is proposed to alleviate the premature convergence problem of other PSO algorithms.
Each particle within the swarm is subjected to aging based on the age-related changes
observed in immune system cells. The proposed algorithm is tested with several popular
and well-established benchmark functions and its performance is compared to other
evolutionary algorithms in both low and high dimensional scenarios. Simulation results
reveal that at the cost of computational time, the proposed algorithm has the potential to
solve the premature convergence problem that affects PSO-based algorithms; showing
good results for both low and high dimensional problems. This work suggests that
aging mechanisms do have further implications in computational intelligence.

Keywords: particle swarm optimization, bio-inspired aging model, evolutionary
optimization algorithms

1. Introduction

Bio-inspired optimization algorithms are based on precise observation of natural systems [1–3].

A relevant characteristic of these algorithms is that the biological process had been tested,

validated and proven by means of evolution. The mechanisms of self-adaption, self-organizing

and self-learning in natural inspired optimization approaches provide means to address chal-

lenging problems that cannot be solved by traditional methods [4].

Thus, bio-inspired algorithms become particularly important to tackle complex optimization pro-

blems [6–10]. The outstanding performance of bio-inspired optimization algorithms is attributed

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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to their structures which are closely related to one or other features observed in nature [10].

Accuracy and repeatability are the prime objectives of every optimization algorithm. There-

fore, modeling biological mechanisms may impact the outcome of the observed system,

designing more accurate and efficient heuristic algorithms [13, 16].

Problem-solving algorithms inspired by one or more biological features have been developed

after observing the behavior in humans, animals, and cells [10–13]. For instance, Genetic

Algorithms (GA) [4] defined the basis for evolutionary computing using the early works of

Darwin [14] and Mendel [15]; or the Ant Colony System (ACS) [6, 7] which considers the

traveling behavior model of self-organized argentine ants published by Goss [5], solving in a

fashion way travel salesman-type problems; or the Particle Swarm Optimization (PSO) [8]

inspired on feeding behavior of bird flocks becoming a very popular optimizer nowadays [17].

Particle-based optimizers, like those described in [8]; or those presented in [18–22, 28] are very

popular because instead of working with one candidate solution, they offer a subset of indi-

vidual candidate solutions (particles), which are explored, exploited and improved. A relevant

mechanism related to evolution that could play a central role in optimization algorithms is

aging [23, 25]. Aging is a natural characteristic whose inclusion in a particle-based optimizer

could give a mean of individual control over the particle without highly increasing the com-

plexity of algorithms [26].

To the authors’ best knowledge, previous PSO algorithms did not have a measurement to

control individual particle existence within the swarm by evaluating each particle perfor-

mance. In PSO, because of the very nature of the algorithm, an effect called premature

convergence appears when most (or all) of the particles within a swarm compromises their

ability to explore and stay close to a local solution. The Particle Swarm Optimization with an

Aging Leader and Challengers (ALC-PSO) [24] was the first approach to include aging

processes to alleviate this unwanted effect. However, this was only leadership-oriented and

not swarm-related; even more important: the aging dynamics were linear and bounded to

static predefined values. In [29], it is used to design a high speed symmetric switching CMOS

inverter.

Our PSO variant proposal, the Particle Swarm Optimization with Bio-inspired Aging Model

(BAM-PSO) is based on a mathematical model that describes the telomeres shortening

observed in the immune system cells, this model includes a form of aging effect over all the

particles of the swarm; this mechanism provides a mean to control the existence of each

particle within the swarm avoiding the premature convergence effect. Therefore, the PSO

variant with aging model possesses the potential to outperform current optimization algo-

rithms and have further implications in computational intelligence. Finally, optimization

under uncertainty and complex functions is an area of special scientific interest, and many real

problems and applications include some form of uncertainty; it is also known that collective-

intelligence algorithms perform excellent in this type of scenarios [11]; BAMPSO has been

successfully implemented in several optimization applications: in time-series forecasting [30]

it was implemented as a training algorithm for an artificial neural network and in [31] it was

used over a Geometric Algebra (GA) framework in order to compute the rigid movement on

images to improve the accuracy of Structure fromMotion (SfM) algorithms, which comprises a

Particle Swarm Optimization with Applications10



family of computer vision algorithms whose paradigm is based on extracting structures when

movement is detected or extracting movement when structures are detected in 2D images.

Therefore, in this work, BAM-PSO is tested with several popular and well-established bench-

mark functions and its performance is compared to well-known evolutionary algorithms in

both low and high dimensional scenarios.

2. Aging mechanisms to alleviate the premature convergence

Aging is the process of becoming older, which consists on the accumulation of changes over

time. This process affects all living systems: humans, cells, unicellular organisms, fruit flies and

mammals like rodents [12, 32, 42]. Since the particles of the PSO optimizer algorithm can be

treated as a living system, aging could represent a relevant mechanism to alleviate the prema-

ture convergence problem in heuristic algorithms. Nowadays, we have better understanding

of the lifespan of human cells, which is determined by homoeostatic properties of the immune

system. Homeostasis refers to the regulation of the lymphocytes pool in an organism. It is

assumed that the number of cells is determined by the capacity of the peripheral immune

system.

In the immune system, it is observed that cell death rate accelerates if the immune cells exceed

the allocated free space [33]. For instance, in the course of a viral infection, immune system

cells can undergo approximately 15–20 divisions. Total proliferative capacity of human T

lymphocyte is about 40–45 divisions and depends on the telomere length [41]. Telomeres are

the end parts of the chromosomes, which become shorter in every cell division; this can be

appreciated in Figure 1. The cell can reach its unresponsiveness state when the telomere length

completes about one half of its initial value.

Telomere dynamics can be interpreted in a mathematical model based on experimental obser-

vations. In this work, we consider the mathematical model proposed by [33] to represent the

telomere dynamics. This model considers the following equation:

dT

dt
¼ α p∗ � Tð ÞN (1)

where T represents the remaining telomere divisions per cell. α defines the telomere consump-

tion rate per iteration. p∗ represents the length of telomere repeats in naive cells produced at

the age t (with initial length p0= 8:3� 103) and N is the number of cells as defined in [33].

Eq. (1) is a differential non-ascending equation that defines the derivative in telomere division

per cell depending on the consumption rate of the cell α, telomere capacity of the cell (p∗) and

number of cells (N). Eq. (1) describes the dynamic of average telomere length T in the pool of

naive cells. The rate of this process depends on p∗ � Tð Þ, where p∗ is the telomere length in the

cells and p0 defines the telomere at initial age. This dynamic describes the self-sustaining

process of regulation of total concentration of the T cells and how the telomere is affected by

T cells concentration and iterations [33].

Particle Swarm Optimization Algorithm with a Bio-Inspired Aging Model
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The proposed scheme in Eq. (1) can provide PSO the same self-regulation capabilities during

swarm’s concentration around a local minimum (known as premature convergence) if we

consider the swarm as lymphocytes, and particle concentration around a local minimum as

T cells concentration. Finally, senescence of the particle will be translated as a new random-

generated particle, replacing the unresponsive one. For this to be achieved, a given particle

within the swarm will have a limited number of iterations to exist within the swarm, similar to

telomere length at p0, and senescence of this particle will occur when particle’s capacity for

search space-exploitation approaches to 0 and swarm’s concentration around a local minimum

has exceeded a given limit (premature convergence indicator), similar to T cells in human

immune systems [35].

Based on this aging mechanism, it is possible to include senescence to a given particle within

the swarm, and the lifespan of each particle will be adjusted according to the error produced

by its candidate solution and the premature convergence indicator of the swarm.

TELOMERE

TELOMERE SHORTENS AFTER MULTIPLE REPLICATIONS

TELOMERE AT SENESCENCE

Figure 1. Telomere division process in human T cells.
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3. Particle swarm optimization with a bio-inspired aging model

(BAM-PSO)

The ALC-PSO variant [24] suggests an interesting approach using aging factors to define when

to remove non-useful characteristics of the algorithm. However, this variant proposes a simple

aging model with the following characteristics:

• The lifespan exists only for the leader and is controlled by linear means according to

lifespan controller shown in [24].

• There is no lifespan controller for the rest of the particles of the swarm, meaning that the

particles continue offering candidate solutions even if premature convergence has occurred.

• There is no communication between particles within the swarm about premature conver-

gence and no evaluation is performed about particle concentration around local minima.

Consequently, there are several points that can be improved in ALC-PSO. For instance, includ-

ing aging mechanisms to the rest of the particles within the swarm may help exploration

without affecting the convergence. Moreover, in order to alleviate premature convergence in

the PSO, there is an urgent need to include means of measuring the premature convergence in

real time allowing the swarm to discard non-useful particles and to explore new candidate

solutions without losing the convergence inertia toward the global minimum.

Based on previous observations, we propose a variant of the PSO named Particle Swarm

Optimization with a Bio-inspired Aging Model (BAM-PSO). Our proposed algorithm con-

siders the aging leader and challengers in the same fashion as ALC-PSO, but it applies

senescence to each particle within the swarm by using the mathematical model that describes

aging dynamics in Eq. (1).

For BAM-PSO to implement senescence efficiently, it is necessary to implement a mechanism

that allows the algorithm to interpret when the swarm has reached a local minimum; this can

be achieved by means of premature convergence measurement.

In the aging model represented by Eq. (1), the number of cells can be interpreted as a measure

of the particles numbers around the same one-dimensional location. In this sense, measuring

the standard deviation among the swarm in each particle dimension can be computed as

follows:

kj ¼
kmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

N

i¼1

P

D

j¼1

xij�xjð Þ
2

D�1ð Þ

v

u

u

t

(2)

where D∈R is the dimension of the problem; kmin represents the deviation minimum for all

dimensions; kj is the premature convergence around j-th element of the dimension D. Note that

xij is the particle within the swarm and xj represents the mean value of all j-th elements of the

Particle Swarm Optimization Algorithm with a Bio-Inspired Aging Model
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swarm. This scheme provides a premature convergence measurement mechanism around each

element of the problem dimension.

3.1. Lifespan controller

The BAM-PSO algorithm considers Eq. (2) to evaluate swarm’s efficiency, and to control the

lifespan of each particle, the aging mechanism proposed by [33] is adapted to the algorithm,

satisfying the next criteria:

Lij ¼ Lij � αkj (3)

With : 0 ≤ Lij ≤Lmax

where Lij is the lifespan of the i-th particle with j-th element of dimension D. Lmax represents the

maximum lifespan of any particle within the swarm.

The error improvement of the particle with respect to the iteration t is calculated by:

α ¼
ei tð Þ

ei t� 1ð Þ
(4)

The error of the i-th particle ei tð Þ is computed within the swarm at iteration t.

This scheme completes the bio-inspired, population-broad aging mechanism and will allow us

to propose the final algorithm.

The steps involved in the BAM-PSO algorithm are as follows:

Step 1: Initialization. The initial positions of all particles are generated randomly within the

n-dimensional search space, with velocities initialized to 0. The best particle among the swarm

is selected as the leader. The age of the leader and all particles within the swarm is initialized to 0.

Step 2: Velocity and position updating. Every particle follows the velocity update rule and the

position update rule presented in [8]:

vij tþ 1ð Þ ¼ vij tð Þ þ c1R1 pij tð Þ � xij tð Þ
� �

þ c2R2 pgj tð Þ � xij tð Þ
� �

(5)

xij tþ 1ð Þ ¼ xij tð Þ þ vij tþ 1ð Þ (6)

with:

i ¼ 1, 2,…, S j ¼ 1, 2,…, D

where i is the ith particle of a swarm that satisfies S∈RD, and j is the jth element of dimension

problem D. Also t represents the iteration counter, R1 and R2 are random, normalized and

uniformly distributed values. c1, c2 represents the social and cognitive parameter, xij tð Þ is the

particle ij position for t iteration, xij tþ 1ð Þ is the particle ij position for tþ 1 iteration, vij tð Þ is the

particle’s ij velocity for t iteration. pij tð Þ represents the local best position for particle ij in

iteration t and pgj tð Þ represents the global best position for entire swarm in iteration t.
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Step 3: Evaluate the leader or generate new challengers for leadership according to leadership

term according to lifespan controller defined in [24]:

δgBest ¼ f pgj tð Þ
� �

� f pgj t� 1ð Þ
� �

≤ 0 (7)

δlBest ¼
X

M

i¼1

f pij tð Þ
� �

�
X

M

i¼1

f pij t� 1ð Þ
� �

≤ 0 (8)

δLeader ¼ f leader tð Þð Þ � f leader t� 1ð Þð Þ ≤ 0 (9)

with leadership term: θ ¼ 1, 2,…,Θ:

Figure 2. BAM-PSO flow diagram.
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where f ∗ð Þ represents the objective function value for the best candidate solution, θ the

remaining leadership’s term, Θ represents the maximum leadership term, δg Best defines the

entire swarm improvement factor, δl Best represents the individual particle improvement

factor, leader represents the particle within the swarm that is the acting leader (not necessarily

pgj tð Þ) and whose all particles will follow according to Eqs. (5) and (6); finally, δLeader represents

the leader’s individual improvement factor.

Eqs. (7), (8) and (9) indicate the leading performance of the leader. The lifespan controller

utilizes these performance evaluations to adjust the leading term of leader according to the

following decision tree:

if δgBest < 0: θ ¼ θþ 2 up to Θð Þ, else :

if δlBest < 0: θ ¼ θþ 1 up to Θð Þ:else :

if δLeaderθ < 0: θ ¼ θ no increaseð Þ, else :

θ ¼ θ� 1 leader term0s reductionð Þ:

When the leading term of leader reaches θ ¼ 0 the leader is considered exhausted and replaced

by newly generated challengers as described in [24].

Step 4: Adjust lifespan of all particles within the swarm according to Eqs. (2)–(4) and replace

particles with random ones for every depleted lifespan.

Step 5: Terminal condition check. If the number of iterations is larger than the predefined or

the error has reached a minimum expected value, the algorithm terminates. Otherwise go to

Step 2 for a new round of iteration.

Figure 2 shows the flow chart for BAM-PSO algorithm.

4. Results

The proposed BAM-PSO algorithm is compared with five different biologically inspired algo-

rithms: PSO with inertial vector and boundaries [27], ant colony system (ACS) [6], differential

evolution (DE) [31], simplified swarm optimization (SSO) [20] and particle swarm optimiza-

tion with aging leader and challengers (ALC-PSO) [24]. These algorithms are selected because

of several factors: first, PSO is the base algorithm for BAM-PSO, so it is natural to compare

performance with the original optimizer, SSO and ALC-PSO are other well-known variants of

PSO that in some way, claim to alleviate the premature convergence problem and, specifically,

ALC-PSO is related in many ways to BAM-PSO. Finally, while ACS and DE are not related

closely to BAM-PSO, they are swarm-based and evolution-based optimization algorithms

respectively and thus, were considered as good candidates for performance comparison.

To test optimization performance of these algorithms, well-established benchmark functions

are selected in low and high dimensionality [33]. These selected functions help evaluate

algorithm’s performance over a broad type of problems, because they possess multiple local

Particle Swarm Optimization with Applications16



minima, complex non-linear structure, or have bowl-shaped/plate-shaped structure [36, 37];

even some of them have a steep ridge and drops structure. From the literature, a list of 18

functions was considered relevant enough to test BAM-PSO performance. The selected bench-

mark functions are shown in Table 1.

For comparison purposes, all algorithms were configured in similar vein when it was possible,

e.g. the ACS algorithm [6] uses ant-type vectors which can be considered particles in a swarm

like those found in the PSO [8, 21], ALC-PSO [24] and the proposed BAM-PSO algorithms.

Nevertheless, the behavior and setting are very different, since ant-type vectors behavior is

determined by a mathematical model that simulates the pheromone attraction between bio-

logical ants. The DE algorithm [34] does not have a swarm-based mathematical model for the

dynamics of particles, but instead the mathematical model used to simulate evolution is based

on vectors and mutation factors. Finally, SSO algorithm [20] does not consider linear equations

f 1 Griewank
1þ 1

4000

Pn
i¼1 x

2
i �

Q

n

i¼1

cos xi
ffi

i
p

� �

f 2 Ackley
�20e

�0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn

i¼1
x2
i

p

� �

� e
1
n

Pn

i¼1
cos 2πxi

� �

þ 20þ e

f 3 Sphere
Pn

i¼1 x
2
i

f 4 Rastrigin An þ
Pn

i¼1 x2i þ A cos 2πxi
� �

f 5 Zakharov Pn
i¼1 x

2
i þ

Pn
i¼1 0:5ixi

� �2 þ Pn
i¼1 0:5ixi

� �4

f 6 Trid
Pn

i¼1 xi � 1ð Þ2 �
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2
i
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i
j

� �
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h i2

f 9 Styblinski-Tang 1
2

Pn
i¼1 x4i � 16x2i þ 5xi

� �

f 10 Shifted Rastrigin
Pn

i¼1 AþPn
i¼1 x2i � A cos 2πxi

� ��

f 11 Schwefel 1.2 Pn
i¼1

Pi
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2
i

f 13 Rosenbrock Pn
i¼1 100 xiþ1 � x2i
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h i
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i¼1 xisen
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f 16 Michalewicz �Pn
i¼1 sen xið Þsen2m ixi

π

� �

f 17 Levy sen2 πω1ð Þ þPn�1
i¼1 ωi � 1ð Þ2 1þ 10sen2 πωi þ 1ð Þ

�

þ ωn � 1ð Þ2 1þ sen2πxn½ ��;ω ¼ 1þ xi � 1

4

f 18 Dixon-Price xi � 1ð Þ2 þPn
i¼2 i 2x

2
i � xi � 1

� �2

Table 1. Benchmark functions used in algorithm performance comparison for BAM-PSO.
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to update the information of the particles, instead a probability function is considered to

decide the next particle position based on previously defined settings.

4.1. Evaluating the algorithms in low dimensional settings

The swarm size S for every algorithm is set to 20, dimension D for every function is set to 2,

and total iterations are set to 10,000 for each objective function. Table 2 reveals the perfor-

mance for the different selected algorithms in a low dimension, the results show the best

possible solution offered by the algorithm after terminal condition was reached. As we can

see, both BAM-PSO and ALC-PSO algorithms show improved performance in comparison to

the other algorithms. Meaning that BAM-PSO provides good results in low dimensional

problems for all the benchmark functions, outperforming most of the other tested algorithms.

It is important to note, that results marked in Bold are the best solution obtained for each case.

4.2. Evaluating the algorithms in high dimensional settings

Our second simulation scenario consists in evaluating the performance of the BAM-PSO with

high dimensional problems. In this case, the total of 18 benchmark functions from Table 1 was

considered and the function dimension D was configured to 30.

Based on the previous results, ALC-PSO, SSO, and PSO algorithm were selected to compare

results with the BAM-PSO because of their shared origin. However, ACS was also included

due to its swarm nature.

At first glance, the results shown in Table 3 suggest that the BAM-PSO provides the best

performance of all compared algorithms in highly-dimensional problems for several bench-

mark functions. It is important to note, that results marked in Bold are the best solution

obtained for each case.

4.3. Non-parametrical statistical analysis of BAM-PSO performance results

In order to conclude whether or not BAM-PSO outperforms the other selected algorithms, more

accurate means of comparison other than simple observation of benchmark results are required;

for this reason, some of the most popular non-parametric statistical tests were employed.

This type of analysis is widely accepted as a metric of performance comparison between algo-

rithms in a pair-wise configuration [43]. To this end, using the statistical procedures defined by

[38–40], the Signed Test and the Wilcoxon Test statistical analysis were selected.

Dimension = 2 BAM-PSO ALC-PSO DE SSO ACS PSO

f 1 0.000000E + 00 0.000000E + 00 7.800000E-03 4.250000E-02 4.880000E-09 0.000000E + 00

f 2 8.880000E-16 8.880000E-16 2.120000E + 00 4.300000E-02 4.160000E-02 8.880000E-16

f 3 0.000000E + 00 0.000000E + 00 2.800000E-01 5.460000E-06 5.460000E-08 3.550000E-43

f 4 0.000000E + 00 0.000000E + 00 2.610000E + 00 4.300000E-03 7.300000E-01 0.000000E + 00

Table 2. Optimization results comparison for D = 2.
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In Table 4, we can observe that BAM-PSO outperforms the other algorithms with an accepted

level of significance using this procedure. However, this test is a simple first-line procedure

and to uncover more evidence over the results, we rely on a more robust and sensitive

procedure, which is the Wilcoxon Test.

The Wilcoxon test results shown in Table 5 shed light over the fact that BAM-PSO algorithm

can go beyond the results provided by the PSO, SSO and ACS with great statistical significance

(P < 0.001), but the procedure finds not enough evidence to conclude that the BAM-PSO can

outperform the ALC-PSO at this level of statistical significance; however, the results are good

enough to show that BAM-PSO can outperform ALC-PSO with good statistical significance

(P < 0.01), and considering the literature claim that: if the resulting P-value is small enough

(P < 0.05), then it can be accepted that the median of the differences between the paired

BAM-PSO vs. ALC_PSO PSO SSO ACS

Positive results 14 15 18 18

Negative results 4 3 0 0

Significant difference? (P < 0.05) Yes Yes Yes Yes

Table 4. Non-parametrical sign test for benchmark results at D = 30.

Dimension = 30 BAM-PSO ALC_PSO PSO SSO ACS

f 1 3.420000E-01 4.810000E-02 1.664995E-02 1.017972E + 00 1.009513E + 00

f 2 1.710000E + 00 2.950000E + 00 6.179332E-01 1.936833E + 01 1.575243E + 01

f 3 9.720000E-04 1.060000E + 00 1.054778E-05 3.628362E + 02 2.766939E + 02

f 4 3.830000E + 00 1.420000E + 03 2.003442E + 02 1.421872E + 06 4.577661E + 05

f 5 2.701825E-07 1.943493E-01 1.314056E + 01 6.189616E + 02 5.320685E + 05

f 6 1.000012E + 00 1.347625E + 04 5.670018E + 03 2.350724E + 06 3.796814E + 06

f 7 1.838826E-25 1.846162E-01 8.309639E-01 5.267949E + 03 7.131057E + 03

f 8 1.693373E-15 5.924127E-08 2.569830E-10 5.672124E-02 2.042905E-01

f 9 1.591141E + 00 4.989256E-03 1.084663E + 03 6.528900E + 02 4.572974E + 02

f 10 4.265668E-03 2.575325E-01 6.748519E + 01 2.362575E + 01 6.768979E + 01

f 11 1.000007E + 00 0.000000E + 00 8.449218E + 120 3.61590E + 115 1.11140E + 121

f 12 1.00008E + 119 9.432255E + 119 2.858556E + 125 1.96354E + 124 3.06278E + 125

f 13 1.000053E + 00 9.837181E + 00 5.033260E + 01 3.015314E + 03 3.832691E + 03

f 14 1.005478E + 00 2.327770E + 03 9.314781E + 03 8.149385E + 03 1.062061E + 04

f 15 2.039775E-23 0.000000E + 00 8.520128E-06 4.815499E-04 9.508960E + 02

f 16 9.177340E + 00 1.276359E + 01 1.683612E + 02 1.086427E + 02 4.458898E + 01

f 17 1.000155E + 00 6.796335E + 00 1.001832E + 00 1.026017E + 02 1.676198E + 02

f 18 9.112266E-01 2.056725E + 02 4.960351E + 00 7.179904E + 05 8.280520E + 05

Table 3. Optimization results comparison for D = 30.
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observations is statistically significantly different from 0 [44]. We can conclude then, that BAM-

PSO has a greater performance over a broad set of benchmark functions over all other selected

algorithms with statistical relevance, including ALC-PSO.

The performance of BAM-PSO can be explained by its senescence mechanism: after particles

falls into local minimum, they offer less improvement; then, the senescence mechanism starts

acting by producing senescence on the swarm; then, exhausted particles are replaced with

random ones through the search space. This favors exploration after premature convergence

without completely eliminating exploitation of search space near the local minimum, which in

the end provides better optimization results than other PSO variants.

5. Conclusions

In this chapter, we introduced a PSO variant algorithm called Particle Swarm Optimization

with Bio-inspired Aging Model (BAM-PSO) which was compared with other five popular bio-

inspired optimizers. This test was performed using popular benchmark functions with low

and high dimensionality configuration.

We observed that the BAM-PSO algorithm has the potential to solve the premature conver-

gence problem of PSO showing good results for both low and high dimensional problems with

statistical relevance according to several non-parametric analyses. Furthermore, according to

results shown in Section 4, BAM-PSO performs better than the selected PSO variants.

As shown in results section, BAM-PSO outperforms all other compared swarm-based algo-

rithms with at least a confidence factor as high as P < 0:01. However, the cost of this improved

accuracy is found in computation complexity due to the introduction of Eq. (2) and all the

lifespan control for the particles; which in turn translates to computing time; this time increase

was found to be approximately of at least 9 times the required computation time for the

original PSO on the conducted experiments of section 5 and 1.5 times the required computa-

tion time for ALC-PSO. However, this increase in time is not fixed, as it depends on how early

the premature convergence occurs and how many particles are replaced after senescence.

Finally, these experimental results provide support on the important role of aging mechanisms

during the selection process in bio-inspired optimization algorithms, because the population-broad

BAM-

PSO

(R+) positive ranks

obtained

(R�) negative ranks

obtained

(Rm) maximum negative

ranks

Accepted significance?

(P < 0.05)

vs ALC-

PSO

147.0 24.0 27 for (P < 0.01) Yes

vs PSO 156.0 15.0 17 for (P < 0.001) Yes

vs SSO 171.0 0.0 17 for (P < 0.001) Yes

vs ACS 171.0 0.0 17 for (P < 0.001) Yes

Table 5. Non-parametrical Wilcoxon test for benchmark results at D = 30.
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aging mechanism implemented in BAM-PSO allows the algorithm to provide better results

than some other popular optimizers that does not implement aging.
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