42 research outputs found

    Human-wildlife conflicts in the southern yungas: What role do raptors play for local settlers?

    Get PDF
    Wildlife persecution due to human-wildlife conflict has become a serious concern for biodiversity conservation, especially for many endangered species. In this context, conservation approaches need to consider the socio-ecological dimensions of each particular situation. The aim of this study was to evaluate the existence, extent and social characteristics of Human-Raptor Conflicts (HRC) in the Southern Yungas region in northwestern Argentina. We conducted 115 semi-structured interviews in 21 sites and analyzed attitudes and associations between sociodemographic variables and the existence of HRC. Forty percent of interviewees showed negative attitudes towards raptors, mainly with those species considered livestock predators rather than poultry predators. A total of 11 species were regarded as conflictive because of predation on domestic animals, of which Andean condors showed the highest conflict. The only socio-demographic factor affecting conflicts was livestock and poultry rearing, independently of age, gender and occupation of interviewees. The fact that only 8.7% of interviewees reported taking direct actions towards conflictive species indicates a relatively peaceful coexistence of people with raptors. Nevertheless, negative attitudes towards Andean condor together with their extreme susceptibility to any increase in non-natural mortality indicate the need of an integral conservation approach to tackle future threats for this species’ conservation in the area.Fil: Salom, Amira. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Suárez, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Micología y Botánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Micología y Botánica; ArgentinaFil: Destefano, Cecilia Andrea. Universidad de Buenos Aires; ArgentinaFil: Cereghetti, Joaquín. No especifíca;Fil: Vargas, Félix Hernán. No especifíca;Fil: Grande, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentin

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe

    Electrocution risk for the endangered Crowned Solitary Eagle and other birds in semiarid landscapes of central Argentina

    No full text
    High mortality by electrocution has been suggested to be the main factor behind the reduction of several birds of prey populations across the world. Almost nothing is known, however, about the impact of power lines on this group of birds in the Neotropical Region. Here we estimate electrocution rates for birds on power lines covering both arid and semiarid biomes of central Argentina. We conducted six bi-monthly power line and raptor surveys throughout 355 km of lines and roads covering an area of approximately 12,000 km2. We described the structural design of 3,118 surveyed electricity pylons. We found 34 electrocuted individuals of four bird families that constitute an annual bird electrocution rate of 0.011 bird/pylon/year. Bird electrocution occurred mostly on concrete pylons with jumpers above the cross-arm. Larger birds of prey had a higher electrocution rate than smaller species. The Crowned Solitary Eagle Buteogallus coronatus was disproportionately affected by this mortality source when compared with its low population density. Electrocution incidents occurred mostly in a few electric pylon designs that represent only 10.2 % of the power pylons monitored in the study area. Therefore, the change or modification of a small fraction of pylons would almost eliminate bird electrocution incidents in our study area. Our results prove that electrocution is a relevant cause of mortality for Crowned Solitary Eagles and urgent mitigating actions are needed to reduce this mortality factor.Fil: Galmes, Maximiliano Adrian. The Peregrine Fund; Estados Unidos. Universidad Nacional de La Pampa. Facultad de Ciencia Exactas y Naturales. Departamento de Recursos Naturales. Centro para el Estudio y Conservación de Aves Rapaces; ArgentinaFil: Sarasola, José Hernán. Universidad Nacional de La Pampa. Facultad de Ciencia Exactas y Naturales. Departamento de Recursos Naturales. Centro para el Estudio y Conservación de Aves Rapaces; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Grande, Juan Manuel. Universidad Nacional de La Pampa. Facultad de Ciencia Exactas y Naturales. Departamento de Recursos Naturales. Centro para el Estudio y Conservación de Aves Rapaces; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Vargas, Félix Hernán. The Peregrine Fund; Estados Unido

    Andean Condor (Vultur gryphus) in Ecuador: Geographic Distribution, Population Size and Extinction Risk.

    No full text
    The Andean Condor (Vultur gryphus) in Ecuador is classified as Critically Endangered. Before 2015, standardized and systematic estimates of geographic distribution, population size and structure were not available for this species, hampering the assessment of its current status and hindering the design and implementation of effective conservation actions. In this study, we performed the first quantitative assessment of geographic distribution, population size and population viability of Andean Condor in Ecuador. We used a methodological approach that included an ecological niche model to study geographic distribution, a simultaneous survey of 70 roosting sites to estimate population size and a population viability analysis (PVA) for the next 100 years. Geographic distribution in the form of extent of occurrence was 49 725 km2. During a two-day census, 93 Andean Condors were recorded and a population of 94 to 102 individuals was estimated. In this population, adult-to-immature ratio was 1:0.5. In the modeled PVA scenarios, the probability of extinction, mean time to extinction and minimum population size varied from zero to 100%, 63 years and 193 individuals, respectively. Habitat loss is the greatest threat to the conservation of Andean Condor populations in Ecuador. Population size reduction in scenarios that included habitat loss began within the first 15 years of this threat. Population reinforcement had no effects on the recovery of Andean Condor populations given the current status of the species in Ecuador. The population size estimate presented in this study is the lower than those reported previously in other countries where the species occur. The inferences derived from the population viability analysis have implications for Condor management in Ecuador. This study highlights the need to redirect efforts from captive breeding and population reinforcement to habitat conservation

    The First Black-and-Chestnut Eagle ( Spizaetus isidori ) Nest Discovered in Argentina Reveals Potential Human–Predator Conflicts

    No full text
    Fil: Aráoz, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Jujuy. Universidad Nacional de Jujuy. Centro de Investigaciones y Transferencia de Jujuy; Argentina. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional.; ArgentinaFil: Grande, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina. Universidad Nacional de La Pampa. Facultad de Ciencia Exactas y Naturales. Departamento de Recursos Naturales. Centro para el Estudio y Conservación de Aves Rapaces; ArgentinaFil: Lopez, Carmen Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina. Universidad Nacional de La Pampa. Facultad de Ciencia Exactas y Naturales. Departamento de Recursos Naturales. Centro para el Estudio y Conservación de Aves Rapaces; ArgentinaFil: Cereghetti, Joaquín. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Vargas, Félix Hernán. The Peregrine Fund; Estados Unido

    Dispersal and Space Use of Captive-Reared and Wild-Rehabilitated Harpy Eagles Released in Central American Landscapes: Implications for Reintroduction and Reinforcement Management

    No full text
    Understanding the spatial context of animal movements is fundamental for the establishment and management of protected areas. We tracked, by telemetry devices, 31 captive-reared and 5 wild-rehabilitated Harpia harpyja and estimated the dispersal and space use after release in Mesoamerica. We evaluated the effectiveness of protected areas in the protection of home ranges and examined how individual traits, release methods and landscape features influenced the dispersal and home range using mixed-effects models. The mean post-release dispersal was 29.4 km (95% CI: 22.5–38.5), and the annual home ranges averaged 1039.5 km2 (95% CI: 627–1941). The home ranges were influenced by the release method, patch richness, patch and edge density and contagion. The currently protected areas in Mesoamerica may not be effective conservation units for this species. The Harpy Eagle average home range greatly exceeded the average size of 1115 terrestrial protected areas (52.7 ± 6.1 km2) in Mesoamerica. Due to their wide use of space, including transboundary space, Harpy Eagle conservation efforts may fail if they are not carefully coordinated between the countries involved. Future restoration efforts of umbrella forest-dwelling raptors should select release sites with highly aggregated and poorly interspersed forests. The release sites should have a buffer of approximately 30 km and should be located completely within protected areas

    Dispersal and Space Use of Captive-Reared and Wild-Rehabilitated Harpy Eagles Released in Central American Landscapes: Implications for Reintroduction and Reinforcement Management

    No full text
    Understanding the spatial context of animal movements is fundamental for the establishment and management of protected areas. We tracked, by telemetry devices, 31 captive-reared and 5 wild-rehabilitated Harpia harpyja and estimated the dispersal and space use after release in Mesoamerica. We evaluated the effectiveness of protected areas in the protection of home ranges and examined how individual traits, release methods and landscape features influenced the dispersal and home range using mixed-effects models. The mean post-release dispersal was 29.4 km (95% CI: 22.5–38.5), and the annual home ranges averaged 1039.5 km2 (95% CI: 627–1941). The home ranges were influenced by the release method, patch richness, patch and edge density and contagion. The currently protected areas in Mesoamerica may not be effective conservation units for this species. The Harpy Eagle average home range greatly exceeded the average size of 1115 terrestrial protected areas (52.7 ± 6.1 km2) in Mesoamerica. Due to their wide use of space, including transboundary space, Harpy Eagle conservation efforts may fail if they are not carefully coordinated between the countries involved. Future restoration efforts of umbrella forest-dwelling raptors should select release sites with highly aggregated and poorly interspersed forests. The release sites should have a buffer of approximately 30 km and should be located completely within protected areas

    Acknowledging Andean Condor predation on livestock, a first step in addressing the human-condor conflict: A commentary to Estrada Pacheco et al. 2020

    No full text
    In this comment, we emphasize the need to acknowledge that Andean Condors occasionally depart from their scavenging habits to injure or kill young livestock as an important first step to accepting the existence of a human-condor conflict. Estrada Pacheco et al. (2020) briefly admit a localized “strong conflict with the condor” due to perceived predation of cattle, however, throughout the bulk of the article, they treat the condor as a nonconflictive species accidentally killed in conflicts involving carnivorous predators. To stop Andean Condor mass poisonings in Argentina, the authors recommended two measures: (1) instating a National Law of Traceability and prescription of pesticides, and (2) engaging all stakeholders to resolve the human-carnivore (i.e., wild mammals) conflict. However, we are deeply concerned that denial of the underlying cause of the specific humancondor conflict leads to criminalizing illegal persecution and to ignoring calls for interdisciplinary research and management to tackle the conflict at its roots.Fil: Zuluaga Castañeda, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina. The Peregrine Fund; Estados UnidosFil: Salom, Amira. The Peregrine Fund; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: Vargas, Félix Hernán. The Peregrine Fund; Estados UnidosFil: Coulson, Jeniffer O.. University of Tulane; Estados UnidosFil: Kohn, Sebastián. Fundación Cóndor Andino; EcuadorFil: Grande, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina. Universidad Nacional de La Pampa; Argentin

    Geographic distribution of Andean Condor (<i>Vultur gryphus</i>) in Ecuador.

    No full text
    <p>Blue dots are roosting sites surveyed during September 29–30, 2015. Red polygons represent the National System of Protected Areas. Green areas represent extent of occurrence (left) and area of occupancy (right).</p

    Andean Condor (<i>Vultur gryphus</i>) in Ecuador: Geographic Distribution, Population Size and Extinction Risk

    No full text
    <div><p>The Andean Condor (<i>Vultur gryphus</i>) in Ecuador is classified as Critically Endangered. Before 2015, standardized and systematic estimates of geographic distribution, population size and structure were not available for this species, hampering the assessment of its current status and hindering the design and implementation of effective conservation actions. In this study, we performed the first quantitative assessment of geographic distribution, population size and population viability of Andean Condor in Ecuador. We used a methodological approach that included an ecological niche model to study geographic distribution, a simultaneous survey of 70 roosting sites to estimate population size and a population viability analysis (PVA) for the next 100 years. Geographic distribution in the form of extent of occurrence was 49 725 km<sup>2</sup>. During a two-day census, 93 Andean Condors were recorded and a population of 94 to 102 individuals was estimated. In this population, adult-to-immature ratio was 1:0.5. In the modeled PVA scenarios, the probability of extinction, mean time to extinction and minimum population size varied from zero to 100%, 63 years and 193 individuals, respectively. Habitat loss is the greatest threat to the conservation of Andean Condor populations in Ecuador. Population size reduction in scenarios that included habitat loss began within the first 15 years of this threat. Population reinforcement had no effects on the recovery of Andean Condor populations given the current status of the species in Ecuador. The population size estimate presented in this study is the lower than those reported previously in other countries where the species occur. The inferences derived from the population viability analysis have implications for Condor management in Ecuador. This study highlights the need to redirect efforts from captive breeding and population reinforcement to habitat conservation.</p></div
    corecore