6,767 research outputs found

    Correlation Between Student Collaboration Network Centrality and Academic Performance

    Full text link
    We compute nodal centrality measures on the collaboration networks of students enrolled in three upper-division physics courses, usually taken sequentially, at the Colorado School of Mines. These are complex networks in which links between students indicate assistance with homework. The courses included in the study are intermediate Classical Mechanics, introductory Quantum Mechanics, and intermediate Electromagnetism. By correlating these nodal centrality measures with students' scores on homework and exams, we find four centrality measures that correlate significantly with students' homework scores in all three courses: in-strength, out-strength, closeness centrality, and harmonic centrality. These correlations suggest that students who not only collaborate often, but also collaborate significantly with many different people tend to achieve higher grades. Centrality measures between simultaneous collaboration networks (analytical vs. numerical homework collaboration) composed of the same students also correlate with each other, suggesting that students' collaboration strategies remain relatively stable when presented with homework assignments targeting different skills. Additionally, we correlate centrality measures between collaboration networks from different courses and find that the four centrality measures with the strongest relationship to students' homework scores are also the most stable measures across networks involving different courses. Correlations of centrality measures with exam scores were generally smaller than the correlations with homework scores, though this finding varied across courses.Comment: 10 pages, 4 figures, submitted to Phys. Rev. PE

    Neuron numbers increase in the human amygdala from birth to adulthood, but not in autism.

    Get PDF
    Remarkably little is known about the postnatal cellular development of the human amygdala. It plays a central role in mediating emotional behavior and has an unusually protracted development well into adulthood, increasing in size by 40% from youth to adulthood. Variation from this typical neurodevelopmental trajectory could have profound implications on normal emotional development. We report the results of a stereological analysis of the number of neurons in amygdala nuclei of 52 human brains ranging from 2 to 48 years of age [24 neurotypical and 28 autism spectrum disorder (ASD)]. In neurotypical development, the number of mature neurons in the basal and accessory basal nuclei increases from childhood to adulthood, coinciding with a decrease of immature neurons within the paralaminar nucleus. Individuals with ASD, in contrast, show an initial excess of amygdala neurons during childhood, followed by a reduction in adulthood across nuclei. We propose that there is a long-term contribution of mature neurons from the paralaminar nucleus to other nuclei of the neurotypical human amygdala and that this growth trajectory may be altered in ASD, potentially underlying the volumetric changes detected in ASD and other neurodevelopmental or neuropsychiatric disorders

    Impaired Spatial Reorientation in the 3xTg-AD Mouse Model of Alzheimer's Disease.

    Get PDF
    In early Alzheimer's disease (AD) spatial navigation is impaired; however, the precise cause of this impairment is unclear. Recent evidence suggests that getting lost is one of the first impairments to emerge in AD. It is possible that getting lost represents a failure to use distal cues to get oriented in space. Therefore, we set out to look for impaired use of distal cues for spatial orientation in a mouse model of amyloidosis (3xTg-AD). To do this, we trained mice to shuttle to the end of a track and back to an enclosed start box to receive a water reward. Then, mice were trained to stop in an unmarked reward zone to receive a brain stimulation reward. The time required to remain in the zone for a reward was increased across training, and the track was positioned in a random start location for each trial. We found that 6-month female, but not 3-month female, 6-month male, or 12-month male, 3xTg-AD mice were impaired. 6-month male and female mice had only intracellular pathology and male mice had less pathology, particularly in the dorsal hippocampus. Thus, AD may cause spatial disorientation as a result of impaired use of landmarks

    Large scale patterns of genetic variation and differentiation in sugar maple from tropical Central America to temperate North America

    Get PDF
    © 2015 Vargas-Rodriguez et al. Background: Geological events in the latter Cenozoic have influenced the distribution, abundance and genetic structure of tree populations in temperate and tropical North America. The biogeographical history of temperate vegetation that spans large ranges of latitude is complex, involving multiple latitudinal shifts that might have occurred via different migration routes. We determined the regional structuring of genetic variation of sugar maple (Acer saccharum subsp. saccharum) and its only subspecies in tropical America (Acer saccharum subsp. skutchii) using nuclear and chloroplast data. The studied populations span a geographic range from Maine, USA (46°N), to El Progreso, Guatemala (15°N). We examined genetic subdivisions, explored the locations of ancestral haplotypes, analyzed genetic data to explore the presence of a single or multiple glacial refugia, and tested whether genetic lineages are temporally consistent with a Pleistocene or older divergence. Results: Nuclear and chloroplast data indicated that populations in midwestern USA and western Mexico were highly differentiated from populations in the rest of the sites. The time of the most recent common ancestor of the western Mexico haplotype lineage was dated to the Pliocene (5.9 Ma, 95 % HPD: 4.3-7.3 Ma). Splits during the Pleistocene separated the rest of the phylogroups. The most frequent and widespread haplotype occurred in half of the sites (Guatemala, eastern Mexico, southeastern USA, and Ohio). Our data also suggested that multiple Pleistocene refugia (tropics-southeastern USA, midwestern, and northeastern USA), but not western Mexico (Jalisco), contributed to post-glacial northward expansion of ranges. Current southern Mexican and Guatemalan populations have reduced population sizes, genetic bottlenecks and tend toward homozygosity, as indicated using nuclear and chloroplast markers. Conclusions: The divergence of western Mexican populations from the rest of the sugar maples likely resulted from orographic and volcanic barriers to gene flow. Past connectivity among populations in the southeastern USA and eastern Mexico and Guatemala possible occurred through gene flow during the Pleistocene. The time to the most common ancestor values revealed that populations from the Midwest and Northeast USA represented different haplotype lineages, indicating major divergence of haplotypes lineages before the Last Glacial Maximum and suggesting the existence of multiple glacial refugia

    Live lecture screencast recording: a proposal to simplify the tasks associated with content production for video-teaching

    Get PDF
    Se trata de un resumen (Abstract) de la contribución. El acuerdo de transferencia de copyright del trabajo completo es incompatible con el depósito del mismo en RIUMA.Se describe la implementación inicial de un método simplificado de grabación en directo de sesiones de clase en asignaturas de las Escuelas de Ingeniería de la Universidad de Málaga. La simplificación se logra al incorporar en la actividad diaria del aula ciertas características típicas de la grabación en diferido de mini videos docentes. En una configuración mínima se graba únicamente el audio y el video en pantalla de la clase, evitando los desafíos técnicos y las dificultades que implica la grabación de otros elementos como la pizarra. Esto implica el uso de anotaciones en pantalla en tiempo real para reemplazar completamente las anotaciones en la pizarra.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. I Plan Propio Integral de Docencia. Universidad de Málaga. Universidad de Málaga. Vicerectorado de Personal Docente e Investigador, Proyectos de Innovación Educativa (PIE 17-018
    corecore