3 research outputs found

    SN 2016coi/ASASSN-16fp: An example of residual helium in a type Ic supernova?

    Get PDF
    The optical observations of Ic-4 supernova (SN) 2016coi/ASASSN-16fp, from ∼2\sim 2 to ∼450\sim450 days after explosion, are presented along with analysis of its physical properties. The SN shows the broad lines associated with SNe Ic-3/4 but with a key difference. The early spectra display a strong absorption feature at ∼5400\sim 5400 \AA\ which is not seen in other SNe~Ic-3/4 at this epoch. This feature has been attributed to He I in the literature. Spectral modelling of the SN in the early photospheric phase suggests the presence of residual He in a C/O dominated shell. However, the behaviour of the He I lines are unusual when compared with He-rich SNe, showing relatively low velocities and weakening rather than strengthening over time. The SN is found to rise to peak ∼16\sim 16 d after core-collapse reaching a bolometric luminosity of Lp ∼3×1042\sim 3\times10^{42} \ergs. Spectral models, including the nebular epoch, show that the SN ejected 2.5−42.5-4 \msun\ of material, with ∼1.5\sim 1.5 \msun\ below 5000 \kms, and with a kinetic energy of (4.5−7)×1051(4.5-7)\times10^{51} erg. The explosion synthesised ∼0.14\sim 0.14 \msun\ of 56Ni. There are significant uncertainties in E(B-V)host and the distance however, which will affect Lp and MNi. SN 2016coi exploded in a host similar to the Large Magellanic Cloud (LMC) and away from star-forming regions. The properties of the SN and the host-galaxy suggest that the progenitor had MZAMSM_\mathrm{ZAMS} of 23−2823-28 \msun\ and was stripped almost entirely down to its C/O core at explosion.Comment: Accepted for publication in MNRAS. Updated to reflect the published version, minor typographical changes onl
    corecore