264 research outputs found

    Characterization of nanomedicines’ surface coverage using molecular probes and capillary electrophoresis

    Get PDF
    International audienceA faithful characterization of nanomedicine (NM) is needed for a better understanding of their in vivo outcomes. Size and surface charge are studied with well-established methods. However, other relevant parameters for the understanding of NM behavior in vivo remain largely inaccessible. For instance, the reactive surface of nanomedicines, which are often grafted with macromolecules to decrease their recognition by the immune system, is excluded from a systematic characterization. Yet, it is known that a subtle modification of NMs' surface characteristics (grafting density, molecular architecture and conformation of macromolecules) is at the root of major changes in the presence of biological components. In this work, a method that investigates the steric hindrance properties of the NMs’ surface coverage based on its capacity to exclude or allow adsorption of well-defined proteins was developed based on capillary electrophoresis. A series of proteins with different molecular weights (MW) were used as molecular probes to screen their adsorption behavior on nanoparticles bearing different molecular architectures at their surface. This novel strategy evaluating to some degree a functionality of NMs can bring additional information about their shell property and might allow for a better perception of their behavior in the presence of biological components. The developed method could discriminate nanoparticles with a high surface coverage excluding high MW proteins from nanoparticles with a low surface coverage that allowed high MW proteins to adsorb on their surface. The method has the potential for further standardization and automation for a routine use. It can be applied in quality control of NMs and to investigate interactions between proteins and NM in different situations

    Beam dynamics studies in SPIRAL II LINAC

    Get PDF
    ACCInternational audienceThe proposed LINAG driver for the SPIRAL 2 project aims to accelerate a 5-mA D+ beam up to 20 A.MeV and 1-mA beam for q/A=1/3 up to 14.5 A.MeV. It is acontinuous wave regime (cw), designed for maximum efficiency in the transmission of intense beams. It consists of an injector (two ECR sources + a Radio Frequency Quadrupole) followed by a superconducting section based on an array of independently phased cavities. This paper presents beams dynamics studies associated to the LINAG driver. End-to-end simulations (low-energy beam lines, RFQ, medium-energy beam line, SC linac) are shown

    Determining the Physical Properties of the B Stars I. Methodology and First Results

    Full text link
    We describe a new approach to fitting the UV-to-optical spectra of B stars to model atmospheres and present initial results. Using a sample of lightly reddened stars, we demonstrate that the Kurucz model atmospheres can produce excellent fits to either combined low dispersion IUE and optical photometry or HST FOS spectrophotometry, as long as the following conditions are fulfilled: 1) an extended grid of Kurucz models is employed, 2) the IUE NEWSIPS data are placed on the FOS absolute flux system using the Massa & Fitzpatrick (1999) transformation, and 3) all of the model parameters and the effects of interstellar extinction are solved for simultaneously. When these steps are taken, the temperatures, gravities, abundances and microturbulence velocities of lightly reddened B0-A0 V stars are determined to high precision. We also demonstrate that the same procedure can be used to fit the energy distributions of stars which are reddened by any UV extinction curve which can be expressed by the Fitzpatrick & Massa (1990) parameterization scheme. We present an initial set of results and verify our approach through comparisons with angular diameter measurements and the parameters derived for an eclipsing B star binary. We demonstrate that the metallicity derived from the ATLAS 9 fits to main sequence B stars is essentially the Fe abundance. We find that a near zero microturbulence velocity provides the best-fit to all but the hottest or most luminous stars (where it may become a surrogate for atmospheric expansion), and that the use of white dwarfs to calibrate UV spectrophotometry is valid.Comment: 17 pages, including 2 pages of Tables and 6 pages of Figures. Astrophysical Jounral, in pres

    Rare Codons Cluster

    Get PDF
    Most amino acids are encoded by more than one codon. These synonymous codons are not used with equal frequency: in every organism, some codons are used more commonly, while others are more rare. Though the encoded protein sequence is identical, selective pressures favor more common codons for enhanced translation speed and fidelity. However, rare codons persist, presumably due to neutral drift. Here, we determine whether other, unknown factors, beyond neutral drift, affect the selection and/or distribution of rare codons. We have developed a novel algorithm that evaluates the relative rareness of a nucleotide sequence used to produce a given protein sequence. We show that rare codons, rather than being randomly scattered across genes, often occur in large clusters. These clusters occur in numerous eukaryotic and prokaryotic genomes, and are not confined to unusual or rarely expressed genes: many highly expressed genes, including genes for ribosomal proteins, contain rare codon clusters. A rare codon cluster can impede ribosome translation of the rare codon sequence. These results indicate additional selective pressures govern the use of synonymous codons, and specifically that local pauses in translation can be beneficial for protein biogenesis

    Chemical and kinematical properties of BSSs and HB stars in NGC 6397

    Full text link
    We used three sets of high-resolution spectra acquired with the multifiber facility FLAMES at the Very Large Telescope of the European Southern Observatory to investigate the chemical and kinematical properties of a sample of 42 horizontal branch (HB) stars, 18 Blue Straggler Stars (BSSs) and 86 main sequence turn-off and sub-giant branch stars in the nearby globular cluster NGC 6397. We measured rotational velocities and Fe, O and Mg abundances. All the unevolved stars in our sample turn out to have low rotational velocites (v sin i< 10\kms), while HB stars and BSSs show a broad distribution, with values ranging from 0 to 70 \kms. For HB stars with T<10500 K there is a clear temperature-oxygen anti-correlation, that can be understood if the star position along the HB is mainly determined by the He content. The hottest BSSs and HB stars (with temperatures T>8200 K and T> 10500 K, respectively) also show significant deviations in their iron abundance with respect to the cluster metallicity (as traced by the unevolved stars, [Fe/H]=-2.12). While similar chemical patterns have been already observed in other hot HB stars, this is the first evidence ever collected for BSSs. We interprete these abundance anomalies as due to the metal radiative levitation, occurring in stars with shallow or no convective envelopes

    Measurement of the lifetime of Pb52+^{52+}, Pb53+^{53+} and Pb54+^{54+} beams at 4.2 MeV per nucleon subject to electron cooling

    Get PDF
    By measuring the lifetime of stored beams, the recombination of the ions with cooling electrons was investigated. Rates found are larger than expected for radiative electron capture and significantly higher for Pb53+ than for Pb54+ and Pb52+. These results are important for the design of the lead ion injection system for the Large Hadron Collider and for recombination theories
    • …
    corecore