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ABSTRACT

By measuring the lifetime of stored beams, the
recombination of the ions with cooling electrons was
investigated. Rates found are larger than expected for
radiative electron capture and significantly higher for Pb53+

than for Pb54+ and Pb52+. These results are important for the
design of the lead ion injection system for the Large Hadron
Collider and for recombination theories.

When electron cooling [1] is applied to heavy ions, recombination -

i.e. capture of cooling electrons into atomic levels resulting in losses

of ions from the storage ring due to the change of their charge [2] - can

become important. We have determined the recombination rates of

partially stripped lead ions by storing and cooling beams from a

recently commissioned linac [3] in the Low Energy Antiproton Ring

(LEAR) (Table 1) to test its feasibility as a Low Energy Accumulator

Ring for ions [4]. Rate coefficients were derived from the beam lifetime

as a function of the electron current.

Table 1 - Parameters of the experiment

Ion energy E [MeV/u] 4.2

Velocity (of ions and electrons) b = v/c 0.094

Storage ring circumference2πR [m] 78.54

Storage ring vacuum pressure P [torr]≈ 2 ¥ 10-11 (85% H2 and He)
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Cooling length/circumference h 0.02

Electron beam radius b [cm] 2.5

Typical electron current I [A]  - 0.2 (0.4)

e-density in cooling sectionne = I/eπb2bc [cm-3] 1.1 ¥ 108 I

Effective e-density per turnneff = hne[cm-3] 2.2 ¥ 106 I

Typical longit. B-field in cooler B [T] 0.06

The linac accelerates Pb27+ * which is further stripped by a foil

after the exit. A "dogleg" arrangement of bending magnets and a

"momentum defining slit" are used to select a single charge state. The

transfer line and LEAR have also to be readjusted to inject and store

different states. About equal intensities of Pb53+ and Pb54+ and a
slightly (~20%) lower current of Pb52+ were found, in fair agreement

with the results of Ref. [5].

The intensity of the circulating beam in LEAR (about 2 µA

corresponding to ≈5 ¥ 105 ions at injection) was monitored via the

Schottky noise [6], observed with current pick-up electrodes. A typical

scan, giving the evolution of the beam current, is shown in Fig. 1. The

1/e lifetime (t) is obtained from an exponential fit. Decay rates (1/t) as

function of the electron current are drawn in Fig. 2. From the slope of

the curves, rate coefficients a = <svrel> = (1/t)/neff (i.e. the decay rates

normalised to the effective electron density heff, Table 1) are derived.

They are collected in Table 2.

Table 2 -Rate coefficients. Present results and values reported in the literature for
partially stripped uranium and gold ions. Included for comparison are the rates
calculated for radiative capture from Bell's formula [7] taking an electron
temperature Te ⊥  = 0.2 eV and an effective ion charge Qeff = (Q+Z)/2  [8].

Ion
Measured rate

coefficient
a [10-8 cm3s-1]

Reference

Calculated from
Bell's formula
for radiative

capture
a [10-8 cm3s-1]

* We use PbQ+ to denote lead ions (atomic charge number Z = 82) of charge state Q, i.e.
with Z-Q remaining electrons.



Pb52+ 11 present results
(June 95)

2.25

Pb53+ 60 " 2.29

Pb54+ 9 " 2.32

U28+ 10 [8, 9, 11] 1.8

Au25+ 10 [9] 1.3

Two interesting facts emerge from this table: The rate coefficients

are larger than calculated for radiative electron capture (using e.g.

Bells' formula [7]) and the contrast between Pb53+ and the neighbouring

charge states is very striking. The difference between Pb52+ and Pb54+

is not very significant given the error (±15%) of the measurement.

"Anomalously" high recombination rates have recently been found

[8-11], with electron cooling or in a single pass technique with a co-

moving "electron target", for a few special ions (Table 2). But this is

the first time that neighbouring charge states of the same element

were investigated with electron cooling showing a marked difference in

the capture cross section.

Attempts reported in the literature to explain the "anomalous"

recombination by dielectronic capture [2, 8-11] are so far only partially

successful. Thus after a careful examination of the possible resonances

Ref. [11] concludes that the "... recombination rate of U28+ ions... still

remains a mystery." We have no explanation to offer for the higher rate

of Pb53+ except the observation that Pb54+ and Pb52+ can perhaps arrange

their remaining 28 and 30 electrons in closed shell structures (e.g. K, L,

M shells for Pb54+, K, L, M plus N, s-subshell for Pb52+) whereas Pb53+

with its odd number of electrons does not have this possibility.

The motivation for the present study is the need for dense bunches

of lead ions for the future Large Hadron Collider (LHC) [12]. Our results

indicate that Pb54+ (or Pb52+) is well suited for accumulation and

electron cooling during a few seconds at 4.2 MeV/u, as proposed for the

lead injection system of the LHC [4], whereas Pb53+, originally foreseen,

has an uncomfortably short lifetime in the presence of strong electron

cooling.
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Fig. 1. Beam Schottky noise at the 100th harmonic (f ≈ 36 MHz) of the revolution
frequency, as displayed by a spectrum analyzer used in the receiver mode to record
the time evolution of the signal induced on a beam current pick-up electrode. The
resolution bandwidth (30 kHz) of the analyzer is chosen to cover the full frequency
spread given by the momentum width of the cooled beam i.e. the total noise in the
band is recorded. The scan is triggered to start 0.2 s prior to injection and the
evolution of the signal is shown during about 10 s. The electronic noise (N) of the
acquisition system adds in square to the Schottky signal (S). Thus the voltage

recorded by the analyzer is U(t) = S t N2 2( ) + . The decay rate is deduced from an
exponential fit of the Schottky power S2(t), which is proportional to the ion beam
current. In this example the measurement for a Pb53+ beam at 120 mA electron
cooling current is displayed.



Variation of the Schottky power density at 36 .097MHz as a 

function of time
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Fig. 2.Beam decay rates 1/t as a function of the electron cooling current. A constant
"background" of 1/t ≈ 1/20 s, corresponding to charge exchange with the residual
gas, has been subtracted from the data. The rate coefficients given in Table 2 are
deduced from the slope of the curves.


