487 research outputs found
A portable diagnostic device for cardiac magnetic field mapping
In this paper we present a portable magnetocardiography device. The focus of this development was delivering a rapid assessment of chest pain in an emergency department. The aim was therefore to produce an inexpensive device that could be rapidly deployed in a noisy unshielded ward environment. We found that induction coil magnetometers with a coil design optimized for magnetic field mapping possess sufficient sensitivity (104fT /√ Hz noise floor at 10Hz) and response (813fT /µV at 10Hz) for cycle averaged magnetocardiography and are able to measure depolarisation signals in an unshielded environment. We were unable to observe repolarisation signals to a reasonable fidelity. We present the design of the induction coil sensor array and signal processing routine along with data demonstrating performance in a hospital environment
Absolute frequency measurements of 85Rb nF7/2 Rydberg states using purely optical detection
A three-step laser excitation scheme is used to make absolute frequency
measurements of highly excited nF7/2 Rydberg states in 85Rb for principal
quantum numbers n=33-100. This work demonstrates the first absolute frequency
measurements of rubidium Rydberg levels using a purely optical detection
scheme. The Rydberg states are excited in a heated Rb vapour cell and Doppler
free signals are detected via purely optical means. All of the frequency
measurements are made using a wavemeter which is calibrated against a GPS
disciplined self-referenced optical frequency comb. We find that the measured
levels have a very high frequency stability, and are especially robust to
electric fields. The apparatus has allowed measurements of the states to an
accuracy of 8.0MHz. The new measurements are analysed by extracting the
modified Rydberg-Ritz series parameters.Comment: 12 pages, 5 figures, submitted to New. J. Phy
Internal-quantum-state engineering using magnetic fields
We present a general, semi-classical theory describing the interaction of an atom with an internal state consisting of a number of degenerate energy levels with static and oscillating magnetic fields. This general theory is applied to the 3P2 metastable energy level of neon to determine the dynamics of the populations and coherences that are formed due to the interaction. Through these calculations we demonstrate how the interaction may be used for the internal state preparation of an atom
Proposal to produce long-lived mesoscopic superpositions through an atom-driven field interaction
We present a proposal for the production of longer-lived mesoscopic
superpositions which relies on two requirements: parametric amplification and
squeezed vacuum reservoir for cavity-field states. Our proposal involves the
interaction of a two-level atom with a cavity field which is simultaneously
subjected to amplification processes.Comment: 12 pages, title changed, text improved and refences adde
Quantum principle of sensing gravitational waves: From the zero-point fluctuations to the cosmological stochastic background of spacetime
We carry out a theoretical investigation on the collective dynamics of an ensemble of correlated atoms, subject to both vacuum fluctuations of spacetime and stochastic gravitational waves. A general approach is taken with the derivation of a quantum master equation capable of describing arbitrary confined nonrelativistic matter systems in an open quantum gravitational environment. It enables us to relate the spectral function for gravitational waves and the distribution function for quantum gravitational fluctuations and to indeed introduce a new spectral function for the zero-point fluctuations of spacetime. The formulation is applied to two-level identical bosonic atoms in an off-resonant high-Q cavity that effectively inhibits undesirable electromagnetic delays, leading to a gravitational transition mechanism through certain quadrupole moment operators. The overall relaxation rate before reaching equilibrium is found to generally scale collectively with the number N of atoms. However, we are also able to identify certain states of which the decay and excitation rates with stochastic gravitational waves and vacuum spacetime fluctuations amplify more significantly with a factor of N². Using such favorable states as a means of measuring both conventional stochastic gravitational waves and novel zero-point spacetime fluctuations, we determine the theoretical lower bounds for the respective spectral functions. Finally, we discuss the implications of our findings on future observations of gravitational waves of a wider spectral window than currently accessible. Especially, the possible sensing of the zero-point fluctuations of spacetime could provide an opportunity to generate initial evidence and further guidance of quantum gravity
Creating massive entanglement of Bose condensed atoms
We propose a direct, coherent coupling scheme that can create massively
entangled states of Bose-Einstein condensed atoms. Our idea is based on an
effective interaction between two atoms from coherent Raman processes through a
(two atom) molecular intermediate state. We compare our scheme with other
recent proposals for generation of massive entanglement of Bose condensed
atoms.Comment: 5 pages, 3 figures; Updated figure 3(a), original was "noisy
Cavity-QED tests of representations of canonical commutation relations employed in field quantization
Various aspects of dissipative and nondissipative decoherence of Rabi
oscillations are discussed in the context of field quantization in alternative
representations of CCR. Theory is confronted with experiment, and a possibility
of more conclusive tests is analyzed.Comment: Discussion of dissipative and nondissipative decoherence is included.
Theory is now consistent with the existing data and predictions for new
experiments are more reliabl
- …
