968 research outputs found

    Functional evolution of quantum cylindrical waves

    Get PDF
    Kucha{\v{r}} showed that the quantum dynamics of (1 polarization) cylindrical wave solutions to vacuum general relativity is determined by that of a free axially-symmetric scalar field along arbitrary axially-symmetric foliations of a fixed flat 2+1 dimensional spacetime. We investigate if such a dynamics can be defined {\em unitarily} within the standard Fock space quantization of the scalar field. Evolution between two arbitrary slices of an arbitrary foliation of the flat spacetime can be built out of a restricted class of evolutions (and their inverses). The restricted evolution is from an initial flat slice to an arbitrary (in general, curved) slice of the flat spacetime and can be decomposed into (i) `time' evolution in which the spatial Minkowskian coordinates serve as spatial coordinates on the initial and the final slice, followed by (ii) the action of a spatial diffeomorphism of the final slice on the data obtained from (i). We show that although the functional evolution of (i) is unitarily implemented in the quantum theory, generic spatial diffeomorphisms of (ii) are not. Our results imply that a Tomanaga-Schwinger type functional evolution of quantum cylindrical waves is not a viable concept even though, remarkably, the more limited notion of functional evolution in Kucha{\v{r}}'s `half parametrized formalism' is well-defined.Comment: Replaced with published versio

    Inverse problems for Schrodinger equations with Yang-Mills potentials in domains with obstacles and the Aharonov-Bohm effect

    Full text link
    We study the inverse boundary value problems for the Schr\"{o}dinger equations with Yang-Mills potentials in a bounded domain Ω0Rn\Omega_0\subset\R^n containing finite number of smooth obstacles Ωj,1jr\Omega_j,1\leq j \leq r. We prove that the Dirichlet-to-Neumann operator on Ω0\partial\Omega_0 determines the gauge equivalence class of the Yang-Mills potentials. We also prove that the metric tensor can be recovered up to a diffeomorphism that is identity on Ω0\partial\Omega_0.Comment: 15 page

    Low Latency Prefix Accumulation Driven Compound MAC Unit for Efficient FIR Filter Implementation

    Get PDF
    135–138This article presents hierarchical single compound adder-based MAC with assertion based error correction for speculation variations in the prefix addition for FIR filter design. The VLSI implementation of approximation in prefix adder results show a significant delay and complexity reductions, all this at the cost of latency measures when speculation fails during carry propagation, which is the main reason preventing the use of speculation in parallel-prefix adders in DSP applications. The speculative adder which is based on Han Carlson parallel prefix adder structure accomplishes better reduction in latency. Introducing a structured and efficient shift-add technique and explore latency reduction by incorporating approximation in addition. The improvements made in terms of reduction in latency and merits in performance by the proposed MAC unit are showed through the synthesis done by FPGA hardware. Results show that proposed method outpaces both formerly projected MAC designs using multiplication methods for attaining high speed

    A quantum logical and geometrical approach to the study of improper mixtures

    Get PDF
    We study improper mixtures from a quantum logical and geometrical point of view. Taking into account the fact that improper mixtures do not admit an ignorance interpretation and must be considered as states in their own right, we do not follow the standard approach which considers improper mixtures as measures over the algebra of projections. Instead of it, we use the convex set of states in order to construct a new lattice whose atoms are all physical states: pure states and improper mixtures. This is done in order to overcome one of the problems which appear in the standard quantum logical formalism, namely, that for a subsystem of a larger system in an entangled state, the conjunction of all actual properties of the subsystem does not yield its actual state. In fact, its state is an improper mixture and cannot be represented in the von Neumann lattice as a minimal property which determines all other properties as is the case for pure states or classical systems. The new lattice also contains all propositions of the von Neumann lattice. We argue that this extension expresses in an algebraic form the fact that -alike the classical case- quantum interactions produce non trivial correlations between the systems. Finally, we study the maps which can be defined between the extended lattice of a compound system and the lattices of its subsystems.Comment: submitted to the Journal of Mathematical Physic

    Gravitons from a loop representation of linearised gravity

    Get PDF
    Loop quantum gravity is based on a classical formulation of 3+1 gravity in terms of a real SU(2) connection. Linearization of this classical formulation about a flat background yields a description of linearised gravity in terms of a {\em real} U(1)×U(1)×U(1)U(1)\times U(1)\times U(1) connection. A `loop' representation, in which holonomies of this connection are unitary operators, can be constructed. These holonomies are not well defined operators in the standard graviton Fock representation. We generalise our recent work on photons and U(1) holonomies to show that Fock space gravitons are associated with distributional states in the U(1)×U(1)×U(1)U(1)\times U(1)\times U(1) loop representation. Our results may illuminate certain aspects of the much deeper (and as yet unkown,) relation between gravitons and states in nonperturbative loop quantum gravity. This work leans heavily on earlier seminal work by Ashtekar, Rovelli and Smolin (ARS) on the loop representation of linearised gravity using {\em complex} connections. In the last part of this work, we show that the loop representation based on the {\em real} U(1)×U(1)×U(1)U(1)\times U(1)\times U(1) connection also provides a useful kinematic arena in which it is possible to express the ARS complex connection- based results in the mathematically precise language currently used in the field.Comment: 23 pages, no figure

    On the Schroedinger Representation for a Scalar Field on Curved Spacetime

    Get PDF
    It is generally known that linear (free) field theories are one of the few QFT that are exactly soluble. In the Schroedinger functional description of a scalar field on flat Minkowski spacetime and for flat embeddings, it is known that the usual Fock representation is described by a Gaussian measure. In this paper, arbitrary globally hyperbolic space-times and embeddings of the Cauchy surface are considered. The classical structures relevant for quantization are used for constructing the Schroedinger representation in the general case. It is shown that in this case, the measure is also Gaussian. Possible implications for the program of canonical quantization of midisuperspace models are pointed out.Comment: 11 pages, Revtex, no figure

    On a certain class of semigroups of operators

    Full text link
    We define an interesting class of semigroups of operators in Banach spaces, namely, the randomly generated semigroups. This class contains as a remarkable subclass a special type of quantum dynamical semigroups introduced by Kossakowski in the early 1970s. Each randomly generated semigroup is associated, in a natural way, with a pair formed by a representation or an antirepresentation of a locally compact group in a Banach space and by a convolution semigroup of probability measures on this group. Examples of randomly generated semigroups having important applications in physics are briefly illustrated.Comment: 11 page

    Quantum mechanics explained

    Get PDF
    The physical motivation for the mathematical formalism of quantum mechanics is made clear and compelling by starting from an obvious fact - essentially, the stability of matter - and inquiring into its preconditions: what does it take to make this fact possible?Comment: 29 pages, 5 figures. v2: revised in response to referee comment

    Polymer quantization of the free scalar field and its classical limit

    Full text link
    Building on prior work, a generally covariant reformulation of free scalar field theory on the flat Lorentzian cylinder is quantized using Loop Quantum Gravity (LQG) type `polymer' representations. This quantization of the {\em continuum} classical theory yields a quantum theory which lives on a discrete spacetime lattice. We explicitly construct a state in the polymer Hilbert space which reproduces the standard Fock vacuum- two point functions for long wavelength modes of the scalar field. Our construction indicates that the continuum classical theory emerges under coarse graining. All our considerations are free of the "triangulation" ambiguities which plague attempts to define quantum dynamics in LQG. Our work constitutes the first complete LQG type quantization of a generally covariant field theory together with a semi-classical analysis of the true degrees of freedom and thus provides a perfect infinite dimensional toy model to study open issues in LQG, particularly those pertaining to the definition of quantum dynamics.Comment: 58 page
    corecore