121 research outputs found

    Tensile and thermal properties of poly(lactic acid)/eggshell powder composite films

    Get PDF
    Biodegradable composite films of poly(lactic acid) (PLA)=eggshell powder (ESP) were prepared by the composite film casting method using chloroform as the solvent. ESP was loaded in PLA in 1 to 5 wt.%. The films were subjected to tensile, FT-IR spectral, thermogravimetric, X-ray, and microscopic analyses. The tensile strength and modulus of the composite films were found to be higher than those of PLA and increased with ESP content up to 4 wt.% and then decreased. A reverse trend was observed in the case of percentage elongation at break. The X-ray diffractograms of the composite films indicated an increase in crystallinity with ESP content. The optical micrographs indicated uniform distribution of ESP particles in the composite films. However, the fractographs indicated agglomeration of ESP particles at 5 wt.% loading. The FT-IR spectra revealed no specific interactions between PLA and ESP. The thermal stability of the composite films increased with ESP content

    Observation of squeezed light from one atom excited with two photons

    Full text link
    Single quantum emitters like atoms are well-known as non-classical light sources which can produce photons one by one at given times, with reduced intensity noise. However, the light field emitted by a single atom can exhibit much richer dynamics. A prominent example is the predicted ability for a single atom to produce quadrature-squeezed light, with sub-shot-noise amplitude or phase fluctuations. It has long been foreseen, though, that such squeezing would be "at least an order of magnitude more difficult" to observe than the emission of single photons. Squeezed beams have been generated using macroscopic and mesoscopic media down to a few tens of atoms, but despite experimental efforts, single-atom squeezing has so far escaped observation. Here we generate squeezed light with a single atom in a high-finesse optical resonator. The strong coupling of the atom to the cavity field induces a genuine quantum mechanical nonlinearity, several orders of magnitude larger than for usual macroscopic media. This produces observable quadrature squeezing with an excitation beam containing on average only two photons per system lifetime. In sharp contrast to the emission of single photons, the squeezed light stems from the quantum coherence of photon pairs emitted from the system. The ability of a single atom to induce strong coherent interactions between propagating photons opens up new perspectives for photonic quantum logic with single emittersComment: Main paper (4 pages, 3 figures) + Supplementary information (5 pages, 2 figures). Revised versio

    Master equations for effective Hamiltonians

    Get PDF
    We reelaborate on a general method for obtaining effective Hamiltonians that describe different nonlinear optical processes. The method exploits the existence of a nonlinear deformation of the su(2) algebra that arises as the dynamical symmetry of the original model. When some physical parameter (usually related to the dispersive limit) becomes small, we immediately get a diagonal effective Hamiltonian that represents correctly the dynamics for arbitrary states and long times. We apply the same technique to obtain how the noise terms in the original model transform under this scheme, providing a systematic way of including damping effects in processes described in terms of effective Hamiltonians.Comment: 10 pages, no figure

    Transition from antibunching to bunching for two dipole-interacting atoms

    Full text link
    It is known that there is a transition from photon antibunching to bunching in the resonance fluorescence of a driven system of two two-level atoms with dipole-dipole interaction when the atomic distance decreases and the other parameters are kept fixed. We give a simple explanation for the underlying mechanism which in principle can also be applied to other systems. PACS numbers 42.50.Ar, 42.50FxComment: Submitted to Phys. Rev. A; 15 pages Latex + 4 figure

    First results from the AugerPrime Radio Detector

    Get PDF

    Update of the Offline Framework for AugerPrime

    Get PDF

    Combined fit to the spectrum and composition data measured by the Pierre Auger Observatory including magnetic horizon effects

    Get PDF
    The measurements by the Pierre Auger Observatory of the energy spectrum and mass composition of cosmic rays can be interpreted assuming the presence of two extragalactic source populations, one dominating the flux at energies above a few EeV and the other below. To fit the data ignoring magnetic field effects, the high-energy population needs to accelerate a mixture of nuclei with very hard spectra, at odds with the approximate E2^{-2} shape expected from diffusive shock acceleration. The presence of turbulent extragalactic magnetic fields in the region between the closest sources and the Earth can significantly modify the observed CR spectrum with respect to that emitted by the sources, reducing the flux of low-rigidity particles that reach the Earth. We here take into account this magnetic horizon effect in the combined fit of the spectrum and shower depth distributions, exploring the possibility that a spectrum for the high-energy population sources with a shape closer to E2^{-2} be able to explain the observations

    Event-by-event reconstruction of the shower maximum XmaxX_{\mathrm{max}} with the Surface Detector of the Pierre Auger Observatory using deep learning

    Get PDF
    corecore