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Abstract 

Biodegradable composite films of Poly(lactic acid)(PLA)/Egg shell powder (ESP) were prepared 

by film casting method using chloroform as the solvent.  ESP was loaded in PLA in 1 to 5 wt.%. 

The films were subjected to tensile, FTIR spectral, thermogravimetric, X-ray and microscopic 

analyses.  The tensile strength and modulus of the composite films were found to be higher than 

PLA and increased with ESP content upto 4 wt.% and then decreased. A reverse trend was 

observed in the case of %elongation at break. The X-ray spectra of the composites indicated 

increase in crystallinity with ESP content. The optical micrographs indicated uniform 

distribution of ESP particles in the composite films. However, the fractographs indicated 

agglomeration of ESP particles at 5 wt.% loading. The FTIR spectra revealed no specific 

interactions between PLA and ESP. The thermal stability of the composite films increased with 

ESP content. 
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Introduction 

Environmental concerns and sustainability issues related with petrochemical-based polymers 

have motivated considerable engineering and scientific efforts devoted to the discovery, 

development, and modifications of biodegradable and renewably-derived polymers over the past 

several decades [1-2]. The selection of biodegradable polymers offers the possibility of obtaining 

innovative types of eco-friendly and fully degradable composites with an extensive application 

potential in several advanced technological sectors [3]. In recent years, there is great interest in 

biodegradable polymers obtained from renewable resources, such as starch, poly(lactic acid), 

polycaprolactone, polyhydroxybutyrate and poly(butylene adipate-co-terephthalate) that  are 

notable for their ability to maintain the biodegradability of the final product [4]. One 

conventional such polymer is poly(lactic acid) or poly(lactide) (PLA), which is  the first 

commodity plastic produced from annually renewable resources. PLA is recyclable, 

biodegradable, thermoplastic, aliphatic linear polyester derived from renewable resources such as 

corn starch, potatoes, sugarcanes or others biomasses [5]. These beneficial properties generally 

enable PLA to compete with petroleum-based plastics in many application areas and also it is 

biocompatible with non-toxic degradation products (at low concentrations), making it a natural 

choice for many biomedical applications [6, 7]. However, the drawbacks of high price, 

sensitivity to water, fast physical aging, inherent brittleness, limited impact resistance and large 

stiffness and slow crystallization rate restrict the industrial applicability of PLA [8-10]. As a 

conclusion result, PLA is tailored in many ways to develop materials with suitable property 

profiles, among others by plasticization, impact modification and by the introduction of fillers or 

fibers, particularly for structural applications [11-18].  

 

A preferred solution referring to blending PLA with low-cost renewable fillers and bio-based 

toughening agents is mainly considered in producing environment-friendly composite materials 

with superior properties. Chicken egg shell powder (ESP) as an important renewable filler of 

PLA attracts great attention because of its low price and easy availability.  Chicken eggshell is a 

poultry industrial byproduct that has been listed worldwide as one of the worst environmental 

problems, especially in those countries where the egg product industry is well developed [19]. 

Eggshell contains about 95 % calcium carbonate in the form of calcite and reaming organic 

materials such as type X collagen, sulfated polysaccharides and other proteins [19]. Although 



there have been several attempts to use eggshell components for different applications, its 

chemical composition and availability makes eggshell a potential source of filler in polymer 

composites [19-21]. Biocomposites that consist of natural polymers and inorganic particles have 

gained more interest as environmentally friendly and biofunctional materials due to their 

interesting properties such as biocompatibility, biodegradability and potential applications in 

industrial fields.    

 

The objective of this work was to improve the properties of PLA, reduce its cost by using low 

cost bio filler and add value to the waste filler. With our best knowledge, no direct reference has 

suggested an effective methodology for strength improvement of PLA/egg shell powder 

composite via simple solvent film casting method. In the present work, the authors used PLA as 

matrix and loaded it with 1 to 5 wt.% of egg shell powder (ESP) and studied the effect of ESP 

loadings on the tensile properties, thermal stability and crystallinity of PLA/ESP composites.  

Scanning electron microscope and FTIR studies were carried out to provide an insight into the 

fiber-matrix adhesion and interactions.  

 

Materials and methods 

Materials 

PLA [Mw=1.3 X 105, (Mw/Mn) = 1.9] was supplied by Zhejiang Hisun chemical company 

limited, China. The supplier indicated L- and D- isomer contents of PLA as 94% and 6% 

respectively. Waste hen egg shells were washed thoroughly in water and dried in the open for 

several days. The cleaned and dried egg shells were made into fine powder using a kitchen 

grinder-mixer and sieved.  The ESP which passed through 25 μm sieve was used as the filler 

after drying. Chloroform (Analytical grade) supplied by S.D. fine chemicals (Mumbai, India) 

was used as received. 

 

Preparation of PLA/ESP composite films 

PLA was dissolved in chloroform to make 10 wt.% solution. Dried ESP was added to this 

solution in 1 5o 5 wt.%  and stirred well with mechanical stirrer. The films of PLA and PLA/ESP 

composites were made by film casting method.  

 



Microscopic analysis 

Optical micrographs of the surface of PLA/ESP composites were recorded using a Leica DMLP 

polarized optical microscope. The fractographs of the brittle fractured and gold sputtered 

composite films were recorded using a JSM 6700 F scanning electron microscope.  

Tensile testing 

Rectangular film strips of 100 mm X 10 mm dimensions with 50 μm thickness were tested for 

tensile properties using an Instron 3365 Universal testing machine maintaining a gauge length of 

50mm at a strain rate of 100 mm min-1. For each set, ten specimens were tested and the average 

values reported. 

 

FTIR spectral analysis 

The FTIR spectra of PLA, ESP and PLA/ESP composite films were recorded in the wavenumber 

range of 4000 to 600 cm-1 using an Analect RTF-65A spectrometer in the reflection mode. 

 

X-ray diffraction analysis 

The wide angle X-ray diffractograms of PLA, ESP and PLA/ESP composite films were recorded 

on a Rigaku Ultima IV X-ray diffractometer.  The system has a rotating anode generator with 

copper target and a wide angle goniometer.  The generator was operated at 40 kV and 30 mA and 

the samples were scanned in the 2θ range of 5 to 80o. 

 

Thermogravimetric analysis 

Primary thermograms of PLA and PLA/ESP composite films were recorded using a 

thermogravimetric analyzer  (Perkin Elmer TGA-7). Samples with approximately 10 mg weight 

were loaded in platinum pans and heated from 30 to 600 oC at a heating rate of 10 oC min-1 under 

nitrogen dynamic flow (100 mL min-1). 

 

Results and Discussion  

The films produced from PLA had good processability during solvent casting method. The PLA 

films showed good flexibility and without apparent cracks. The egg shell powder reinforced PLA 

composite films were homogeneously overlaid the surfaces without changing the appearance of 

the sheets, and its presence did not change the thickness appreciably, which was around 50 µm.  



In order to assess the uniform dispersion of ESP particles in PLA matrix, the optical micrographs 

of the composites were recorded and are presented in Figure 1. It is evident from Fig.1 that the 

ESP particles were dispersed uniformly in the composites (ESP particles are indicated by 

arrows). Both physical and chemical interactions may be responsible for such uniform 

dispersion. 

 

In order to assess the mechanical performance of PLA/ESP composite films, their tensile 

properties were studied. Figure 2 shows the stress-strain curves of PLA and PLA/ESP composite 

films. The effect of filler loading on the tensile (strength, modulus and elongation at break) 

properties of ESP filled PLA composite films were presented in Table 1. From Table 1, it can be 

observed that the tensile strength and modulus increased with filler content up to 4 wt.% filler 

loading and decreased thereafter. This discontinuity could be attributed to increased filler 

quantity leading to weaker filler-matrix interface and agglomeration of filler particles, which 

consequently decreases the strength and modulus. This is probably because of a better interfacial 

adhesion between the filler and the matrix by the Van der Waals or induction interactions. 

However, in all the cases, the tensile strength and modulus of the composite films were found to 

be higher than that for the matrix. At the composition of 4 wt.% filler by weight, tensile strength 

and modulus of the composite films were found to be 30.6 MPa and 1964 MPa respectively.  The 

increase in tensile strength and modulus of composite films, over the matrix were as follows 82.1 

and 70.4% respectively. However, from Table 1, it can be observed that the % elongation at the 

break decreased with increasing filler loading. Increased filler loading in the matrix resulted in 

the stiffening and hardening of the composite films and the recipe took away shape ductile.  

 

The observation of the morphology of composite films was performed by scanning electron 

microscopy. Figure 3 shows the micrographs of the brittle fractured composite films with  

different filler loadings. From Figure 3 (a-d), it is evident that ESP particles were distributed 

uniformly and individually in the PLA/ESP composites with 1 to 4 wt.% ESP content. However, 

from Figure 3(e), it can be observed that the ESP particles were agglomerated at some places 

when the ESP content was 5 wt.%. Further, voids are not appearing in the composites because 

solvent completely evaporated in the composites during the film casting. Also no gaps appeared 

between the ESP and PLA due to the hydrophilic behavior of filler and matrix. 



In order to further investigate the interactions between ESP and PLA in the PLA/ESP composites 

FTIR spectra were recorded. Figure 4 presents the FTIR spectra of PLA, ESP and PLA/ESP 

composites. From Fig.4, it is evident that neat PLA shows the absorption bands at 3659 cm-1 

corresponding to the terminal OH group. The other bands at 2994 and 2946 cm-1 were assigned 

to the –CH asymmetric and symmetric stretching vibrations respectively of –CH3 groups in the 

side chains. The band at 1454 cm-1 was assigned to the bending vibration of –CH.  A strong 

absorption band at 1743 cm-1 was assigned to the stretching vibration of carbonyl (-C=O) groups 

from the repeated ester units [22].  Another strong absorption band at 1182 cm-1 was assigned to 

stretching vibration of –C-O in –CH-O of polymer chains.  The rocking triplet peaks at 1130, 

1082 and 1038 cm-1 correspond to C-O stretching vibrations in –CO-O groups [6]. The 

absorption bands at 956 and 870 cm-1 were assigned to C-C stretching of the single bond.  A 

strong absorption band at 749 cm-1 was assigned to the deformation vibration of –CH3 groups.  

The FTIR spectrum of ESP revealed major absorption bands at 1415, 879 and 700 cm-1 which 

were assigned to asymmetric stretching, out of plane bending and in-plane bending vibration 

modes respectively of (CO3)2- molecules [23, 24]. Also a broad band of low intensity in the range 

of 3700-3060 cm-1 was attributed to traces of water together with very weak broad band around 

1650 cm-1 to hydroxyl groups (probably from carboxylic acid group of minor constituent protein) 

[23]. From Figure 4, it is also evident that the spectra of PLA/ESP are similar to the spectrum of 

PLA indicating predominantly physical interactions without the formation of new functional 

groups. However, the intensity of the band at 1743 cm-1 was found to be higher than that of PLA. 

Further, in the 1266-1038 cm-1 range, the C-O stretching bands of composites were slightly more 

intense due to the hydrogen bonds between the C–O of PLA and O–H groups of ESP filler.    

 

As ESP is crystalline due to its CaCO3 major content, it is worthwhile to investigate the effect of 

ESP on the crystallinity of PLA/ESP composites.  The X-ray diffractograms of ESP, PLA and 

PLA/ESP composites are presented in Fig.5. From Figure 5, it is evident that for ESP, a main 

sharp peak at 2θ ~ 29o appeared resulting from (211) plane of CaCO3 [25]. As PLA is 

amorphous, no peaks in the region of interest were observed. Because of overlapping of ESP and 

the amorphous PLA halo, the peaks of PLA/ESP composites could not be identified correctly.  In 

order to overcome this problem, the X-ray diffractograms of PLA/ESP composites were 

highlighted in the 2θ = 29.2o to 30.6o region and are presented in Figure 6. From Figure 6, the 



crystalline peaks corresponding to ESP in the PLA/ESP composites can be observed in and 

around 29.8o. Thus the induced crystallinity by ESP in PLA/ESP composites may also be 

responsible for their increased tensile properties. 

 

In order to study the effect of ESP on the thermal stability of PLA/ESP composites, the 

thermogravimetric analysis was carried out.  Figure 7 presents the primary thermograms of PLA 

and PLA/ESP composites. It is evident from Figure 7 that the thermal stability of the PLA/ESP 

composites was higher than that of PLA and increased with ESP content.  Further, the char 

content of the composites was also higher than for PLA.  This as per expectation as ESP due to 

its major component of crystalline CaCO3 has higher thermal stability than the amorphous PLA. 

 

Conclusion 

Using chloroform as the solvent, PLA and PLA/ESP composite films with 1 to 5 wt.% ESP were 

prepared by solution casting technique.  The effect of ESP on the tensile properties, crystallinity 

and thermal stability of the composites was studied.  The tensile strength and modulus of the 

composites was found to be higher than those of the matrix and increased with ESP content upto 

4 wt.% and then decreased.  The % elongation at break showed a reverse trend.  Though the 

optical micrographs showed uniform distribution of ESP in the composites for all concentrations, 

the fractographs indicated agglomeration of ESP particles for a loading of 5 wt.%. The X-ray 

diffractograms indicated induced crystallinity in the composites by ESP.  The FTIR spectra did 

not reveal any appreciable specific interactions between PLA and ESP.  The thermal stability of 

the composites was found to be higher than PLA.  Thus ESP improved the properties of PLA. 

This process reported here opens a new aperture to the high value-added applications of egg shell 

powder. 
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Caption for Figures  

Figure1. Optical micrographs of PLA/ESP composites with ESP content of (a) 1 wt.%;  (b) 2 

wt.%; (c) 3 wt.%; (d) 4 wt.% and (e) 5 wt.% 

Figure 2. Stress-Strain curves of PLA and PLA/ESP composites with 1 to 5 wt.% ESP 

Figure 3. Fractographs of PLA/ESP composites with ESP content of (a) 1 wt.%; (b) 2 wt.%; (c) 

3 wt.%; (d) 4 wt.% and (e) 5 wt.%.  

Figure 4.  FTIR spectra of PLA, ESP and PLA/ESP composites 

Figure 5. X-ray diffractograms of PLA, ESP and PLA/ESP composite films 

Figure 6. X-ray diffractograms of PLA/ESP composite films in a narrow 2θ range. 

Figure 7. Primary thermograms of PLA and PLA/ESP composites with 1 to 5 wt.% ESP. 

 

Caption for Table 

Table 1. Tensile properties of Egg shell powder reinforced PLA composites as a function of Egg    

               shell powder content  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure1. Optical micrographs of PLA/ESP composites with ESP content of (a) 1 wt.%;  (b) 2 

wt.%; (c) 3 wt.%; (d) 4 wt.% and (e) 5 wt.% 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Stress-Strain curves of PLA and PLA/ESP composites with 1 to 5 wt.% ESP 

 

 



 

 

 

 

 

 

 

 

 

 

Figure 3. Fractographs of PLA/ESP composites with ESP content of (a) 1 wt.%; (b) 2 wt.%; (c) 

3 wt.%; (d) 4 wt.% and (e) 5 wt.%. 

 

 

 

 

 

 

 

 

 

 

Figure 4.  FTIR spectra of PLA, ESP and PLA/ESP composites 

 

 

 



 

 

 

 

 

 

 

 

 

Figure 5. X-ray diffractograms of PLA, ESP and PLA/ESP composite films 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6. X-ray diffractograms of PLA/ESP composite films in a narrow 2θ range. 

 

 

 



 

 

 

 

 

 

 

 

 

 

Figure 7. Primary thermograms of PLA and PLA/ESP composites with 1 to 5 wt.% ESP. 

 

Table 1. Tensile properties of Egg shell powder reinforced PLA composites as a function of Egg 
shell powder content  

 

Wt.% ESP in the 

composite  

Maximum Stress 

(MPa) 

Young’s Modulus 

(MPa) 

Elongation at Break 

(%) 

0  16.8±0.5 1152±32 402±27 

1 17.7±0.4 1171±51 352±19 

2 21.1±0.8 1433±69 213±25 

3 25.5±1.1 1767±66 173±23 

4 30.6±1.7 1964±126 143±16 

5 22.5±0.9 1389±95 286±35 


