189 research outputs found

    Photon emission induced by elastic exciton--carrier scattering in semiconductor quantum wells

    Get PDF
    We present a study of the elastic exciton--electron (X−e−X-e^-) and exciton--hole (X−hX-h) scattering processes in semiconductor quantum wells, including fermion exchange effects. The balance between the exciton and the free carrier populations within the electron-hole plasma is discussed in terms of ionization degree in the nondegenerate regime. Assuming a two-dimensional Coulomb potential statically screened by the free carrier gas, we apply the variable phase method to obtain the excitonic wavefunctions, which we use to calculate the 1ss exciton--free carrier matrix elements that describe the scattering of excitons into the light cone where they can radiatively recombine. The photon emission rates due to the carrier-assisted exciton recombination in semiconductor quantum-wells (QWs) at room temperature and in a low density regime are obtained from Fermi's golden rule, and studied for mid-gap and wide-gap materials. The quantitative comparison of the direct and exchange terms of the scattering matrix elements shows that fermion exchange is the dominant mechanism of the exciton--carrier scattering process. This is confirmed by our analysis of the rates of photon emission induced by electron-assisted and hole-assisted exciton recombinations.Comment: Thoroughly revised version of previous work. Weak and incorrect assumptions have been removed from the paper, and its scope has evolved: see abstract. This is the final version, i.e. as accepted for publication in the European Physical Journal

    SynthÚse de nanoparticules mésoporeuses de silice et encapsulation du cisplatine en vue du ciblage des traitements de chimiothérapie anticancéreuse

    Get PDF
    The aim of this PhD thesis is to elaborate mesoporous silica nanoparticles (MSNs) able to sustain the release of cisplatin into the intracellular compartments of solid tumors. The parametric study shows that morphological, structural and textural properties of MSNs-MCM-41, synthesized by sol-gel reaction by using TEOS as a silica source and CTAB as a structure-directing agent, depend on pH, stirring speed, temperature and extraction process of CTAB. The synthesis atmosphere has to be controlled in order to avoid the presence of ethanol and carbonate species which are responsible of necks between particles generating unstable suspensions of MSNs.MSNs were functionalized in order to control the interactions between cisplatin and MSNs or to improve their colloidal stability in physiological media.Various silanated organic molecules (APTES, TESP, MPTES, CEST) and neutral or ionised polymers were grafted into the MSNs using a co-condensation approach or a postsynthetic functionalization method while keeping structural and textural properties of MSNs unchanged.The amount of cisplatin encapsulated by using impregnation are higher than those obtained by using adsorption and depend on MSNs fonctionalization. MSNs grafted by PEI allow a sustained drug release and cytotoxic effects similar to cisplatin. In vitro assays show that MSNs devoid of cisplatin are not cytotoxic up to 200 ”g/mL. Confocal microscopy study reveals that MSNs internalization is efficient after about 2h of contact with cells.L’objectif de cette thĂšse est de dĂ©velopper des nanoparticules mĂ©soporeuses de silice (MSNs) capables de libĂ©rer un anticancĂ©reux, le cisplatine, dans le milieu intracellulaire de tumeurs solides. Une Ă©tude paramĂ©trique montre que les propriĂ©tĂ©s morphologiques, structurales et texturales des MSNs de type MCM-41, synthĂ©tisĂ©es par voie sol-gel Ă  partir d’un mĂ©lange d’un prĂ©curseur de silice (TEOS) et de tensioactif (CTAB), dĂ©pendent du pH, de la vitesse d’agitation, de la tempĂ©rature et du mode d’extraction du CTAB. La synthĂšse doit avoir lieu sous atmosphĂšre contrĂŽlĂ©e pour Ă©viter la prĂ©sence en solution d’ions carbonates et d’éthanol Ă  l’origine de ponts entre les particules qui altĂšrent la stabilitĂ© colloĂŻdale des MSNs.Les MSNs ont Ă©tĂ© fontionnalisĂ©es pour contrĂŽler l’affinitĂ© chimique du cisplatine pour la surface des MSNs et pour amĂ©liorer la stabilitĂ© colloĂŻdale des MSNs en milieu physiologique. Des organosilanes (APTES, TESP, MPTES, CEST) et des polymĂšres neutres ou ionisĂ©s (PEG, PEI) ont Ă©tĂ© ajoutĂ©s par co-condensation ou par greffage post synthĂšse tout en prĂ©servant les propriĂ©tĂ©s structurales et texturales des MSNs. Les quantitĂ©s de cisplatine encapsulĂ©es par imprĂ©gnation sont plus Ă©levĂ©es que par adsorption et dĂ©pendent de la fonctionnalisation des MSNs. Les MSNs greffĂ©es en surface par la PEI permettent une libĂ©ration progressive de l’anticancĂ©reux ainsi qu’une cytotoxicitĂ© comparable Ă  celle du cisplatine administrĂ© seul.Des tests in vitro montrent que les MSNs en l’absence de cisplatine ne prĂ©sentent pas d’effet cytotoxique jusqu’à une concentration de 200 ”g/mL. Une Ă©tude par microscopie confocale montre une internalisation des MSNs Ă  partir de 2h de mise en contact avec les cellules

    Development, characterization and modeling of interfaces for high efficiency silicon heterojunction solar cells

    Get PDF
    L interface entre le silicium amorphe (a-Si:H) et le silicium cristallin (c-Si) est un constituent clĂ©s de cellules solaires Ă  haut rendement reposant sur des procĂ©dĂ©s Ă  basse tempĂ©rature. Trois propriĂ©tĂ©s de l interface dĂ©terminent le rendement des cellules solaires Ă  hĂ©tĂ©rojonction de silicium: les dĂ©calages de bandes entre a-Si:H et c-Si, les dĂ©fauts d interface et la courbure de bande dans c-Si. Ces trois aspects sont traitĂ©s dans ces travaux de thĂšse.Dans un premier un temps, un calcul analytique de la courbure de bande dans c-Si est dĂ©veloppĂ©. Il repose sur l approximation d une densitĂ© d Ă©tat (DE) constante dans la bande interdite de a-Si:H. L influence des principaux paramĂštres de la structure sur la courbure de bande est Ă©tudiĂ©e : dĂ©calage de bande, densitĂ© d Ă©tat dans a-Si:H, dĂ©faut d interface, etc. La prĂ©sence d un effet de confinement quantique est discutĂ©e. GrĂące Ă  une comparaison entre ces calculs et des mesures de conductance planaire en fonction de la tempĂ©rature sur des structures (p)a-Si:H/(n)c-Si et (n)a-Si:H/(p)c-Si, les dĂ©calages de bande de valence et de conduction ont pu ĂȘtre estimĂ©s Ă  0.36 eV et 0.15 eV respectivement. En outre, il est montrĂ© que le dĂ©calage de la bande de valence est indĂ©pendant de la tempĂ©rature, alors que le dĂ©calage de la bande de conduction suit les Ă©volutions des bandes interdites de c-Si et a-Si:H. Ces mesures tendent Ă  prouver que le branch point dans a-Si:H est indĂ©pendant du dopage.Ensuite, les calculs analytiques sont approfondis pour prendre en compte diffĂ©rents aspects de la structure complĂšte incorporĂ©e dans les cellules : contact avec un oxyde transparent conducteur, prĂ©sence d une couche de a-Si:H non-dopĂ©e Ă  l interface. A l aide de simulations numĂ©riques et Ă  la lumiĂšre de mesures de conductance planaire conjuguĂ©es Ă  des mesures de la qualitĂ© de passivation de l interface, des pistes pour optimiser les cellules Ă  hĂ©tĂ©rojonction sont commentĂ©es. En particulier, il est montrĂ© qu un optimum doit ĂȘtre trouvĂ© entre une bonne passivation et une courbure de bande suffisante. Ceci peut ĂȘtre accompli par un rĂ©glage fin des propriĂ©tĂ©s de la couche tampon (Ă©paisseur, dopage), du contact (travail de sortie Ă©levĂ©) et de l Ă©metteur (p)a-Si:H (densitĂ© de dĂ©fauts et Ă©paisseur). En particulier, un Ă©metteur avec une DE importante conduit paradoxalement Ă  de meilleures performances.Enfin, un nouveau type d interface a Ă©tĂ© dĂ©veloppĂ©. La surface de c-Si a Ă©tĂ© oxydĂ©e volontairement dans de l eau pure dĂ©-ionisĂ©e Ă  80 C avant le dĂ©pĂŽt de (p)a-Si:H afin d obtenir une structure (p)a-Si:H/SiO2/(n)c-Si. A l aide d un modĂšle de courant par effet tunnel implĂ©mentĂ© dans le logiciel de simulation numĂ©rique AFORS-HET, l effet d une couche Ă  grande bande interdite (comme c est le cas pour SiO2) sur les performances de cellules est Ă©tudiĂ© : le facteur de forme et le courant de court-circuit sont extrĂȘmement rĂ©duits. En revanche, une couche de SiO2 n a que peu d impact sur les propriĂ©tĂ©s optiques de la structure. ExpĂ©rimentalement, les Ă©chantillons rĂ©alisĂ©s montrent une qualitĂ© de passivation Ă  mi-chemin entre le cas sans couche tampon et le cas avec (i)a-Si:H : ceci est expliquĂ© par la prĂ©sence d une charge fixe nĂ©gative dans l oxyde. La courbure de bande dans c-Si est moins affectĂ©e par la prĂ©sence d une couche d oxyde que d une couche de (i)a-Si:H. Les cellules solaires rĂ©alisĂ©es dĂ©montrent que le concept a le potentiel d aboutir Ă  de hauts rendements : sur des structures non-optimisĂ©es, une tension de court-circuit supĂ©rieure Ă  650 mV a Ă©tĂ© dĂ©montrĂ©e, alors que l oxyde ne semble pas limiter le transport de charge.The interface between amorphous silicon (a-Si:H) and crystalline silicon (c-Si) is the building block of high efficiency solar cells based on low temperature fabrication processes. Three properties of the interface determine the performance of silicon heterojunction solar cells: band offsets between a-Si:H and c-Si, interface defects and band bending in c-Si. These three points are addressed in this thesis.First, an analytical model for the calculation of the band bending in c-Si is developed. It assumes a constant density of states (DOS) in the a-Si:H band gap. The influence of most parameters of the structure on the band bending is studied: band offsets, DOS in a-Si:H, interface defects, etc. The presence of quantum confinement at the interface is discussed. Analytical calculations and temperature dependent planar conductance measurements are compared such that the band offsets on both (p)a-Si:H/(n)c-Si and (n)a-Si:H/(p)c-Si can be estimated: the valence band offset amounts 0.36 eV while the conduction band offset is 0.15 eV. In addition, it is shown that the valence band offset is independent of temperature whereas the conduction band offset follows the evolutions of c-Si and a-Si:H band gaps with temperature. A discussion of these results in the frame of the branch point theory for band line-up leads to the conclusion that the branch point in a-Si:H is independent of the doping.Then, analytical calculations are developed further to take into account the real solar cell structure where the a-Si:H/c-Si structure is in contact with a transparent conductive oxide and an undoped buffer layer is present at the interface. Measurements of the planar conductance and of the interface passivation quality are interpreted in the light of analytical calculations and numerical simulations to open a way towards a method for the optimization of silicon heterojunction solar cells. It is particularly shown that a trade-off has to be found between a good passivation quality and a significant band bending. This can be realized by tuning the buffer layer properties (thickness, doping), the TCO-contact (high work function) and the emitter (defect density and thickness). Interestingly, an emitter with a high DOS leads to better cell performances.Finally, a new type of interface has been developed, that was not applied to heterojunction solar cells so far. The c-Si surface has been oxidized in deionized water at 80 C before the (p)a-Si:H emitter deposition such that (p)a-Si:H/SiO2/(n)c-Si structures were obtained. A tunneling current model has been developed, implemented in the 1D numerical device simulator AFORS-HET and used to study the effect of a wide band gap interfacial layer (as it is the case for SiO2) on cell performance: the fill-factor and the short-circuit current are dramatically reduced for thick and high barriers. However, a SiO2 layer has only little impact on optical properties. Fabricated samples show a passivation quality halfway between samples with no buffer layer and with an (i)a-Si:H buffer layer: this is explained by the presence of a negative fixed charge in the oxide. The band bending in (n)c-Si is higher with an oxide layer than with an (i)a-Si:H buffer layer. Solar cells demonstrate that this new concept has the potential to achieve high power conversion efficiencies: for non-optimized structures, an open-circuit voltage higher than 650 mV has been demonstrated, while the oxide does not seem to create a barrier to charge transport.PARIS11-SCD-Bib. Ă©lectronique (914719901) / SudocSudocFranceF

    A physicochemical assessment of the thermal stability of dextrin–colistin conjugates

    Get PDF
    Attachment of polysaccharide carriers is increasingly being used to achieve precision delivery and improved effectiveness of protein and peptide drugs. Although it is clear that their clinical effectiveness relies on the purity and integrity of the conjugate in storage, as well as following administration, instability of polysaccharide-based conjugates can reduce the protective efficacy of the polymer, which may adversely affect the bioactive’s potency. As a model, these studies used dextrin–colistin conjugates, with varying degrees of polymer modification (1, 2.5 and 7.5 mol% succinoylation) to assess the effect of storage temperature (− 20, 4, 21 and 37 °C) and duration (up to 12 months) on saccharide and colistin release and antimicrobial activity. Estimation of the proportion of saccharide release (by comparison of area under the curve from size exclusion chromatograms) was more pronounced at higher temperatures (up to 3 and 35% at − 20 °C and 37 °C, respectively after 12 months), however, repeated freeze–thaw did not produce any measurable release of saccharides, while addition of amylase (20, 100, 500 IU/L) caused rapid release of saccharides (> 70% total within 24 h). At all temperatures, conjugates containing the lowest degree of succinoylation released the highest proportion of free colistin, which increased with storage temperature, however no trend in saccharide release was observed. Despite the clear physical effects of prolonged storage, antimicrobial activity of all samples was only altered after storage at 37 °C for 12 months (> threefold decreased activity). These results demonstrate significant release of saccharides from dextrin–colistin conjugates during prolonged storage in buffered solution, especially at elevated temperature, which, in most cases, did not affect antimicrobial activity. These findings provide vital information about the structure–activity relationship of dextrin–colistin conjugates, prior to full-scale commercial development, which can subsequently be applied to other polysaccharide-protein and -peptide conjugates

    Alginate oligosaccharides enhance diffusion and activity of colistin in a mucin-rich environment

    Get PDF
    In a number of chronic respiratory diseases e.g. cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD), the production of viscous mucin reduces pulmonary function and represents an effective barrier to diffusion of inhaled therapies e.g. antibiotics. Here, a 2-compartment Transwell model was developed to study impaired diffusion of the antibiotic colistin across an artificial sputum (AS) matrix/medium and to quantify its antimicrobial activity against Pseudomonas aeruginosa NH57388A biofilms (alone and in combination with mucolytic therapy). High-performance liquid chromatography coupled with fluorescence detection (HPLC-FLD) revealed that the presence of AS medium significantly reduced the rate of colistin diffusion (> 85% at 48 h; p < 0.05). Addition of alginate oligosaccharide (OligoG CF-5/20) significantly improved colistin diffusion by 3.7 times through mucin-rich AS medium (at 48 h; p < 0.05). Increased diffusion of colistin with OligoG CF-5/20 was shown (using confocal laser scanning microscopy and COMSTAT image analysis) to be associated with significantly increased bacterial killing (p < 0.05). These data support the use of this model to study drug and small molecule delivery across clinically-relevant diffusion barriers. The findings indicate the significant loss of colistin and reduced effectiveness that occurs with mucin binding, and support the use of mucolytics to improve antimicrobial efficacy and lower antibiotic exposure

    Quantification of surface GalNAc ligands decorating nanostructured lipid carriers by UPLC-ELSD

    Get PDF
    Nanoparticles have been extensively studied for drug delivery and targeting to specific organs. The functionalization of the nanoparticle surface by site-specific ligands (antibodies, peptides, saccharides) can ensure efficient recognition and binding with relevant biological targets. One of the main challenges in the development of these decorated nanocarriers is the accurate quantification of the amount of ligands on the nanoparticle surface. In this study, nanostructured lipid carriers (NLC) were functionalized with N-acetyl-D-galactosamine (GalNAc) units, known to target the asialoglycoprotein receptor (ASGPR). Different molar percentages of GalNAc-functionalized surfactant (0%, 2%, 5%, and 14%) were used in the formulation. Based on ultra-high-performance liquid chromatography separation and evaporative light-scattering detection (UPLC-ELSD), an analytical method was developed to specifically quantify the amount of GalNAc units present at the NLC surface. This method allowed the accurate quantification of GalNAc surfactant and therefore gave some insights into the structural parameters of these multivalent ligand systems. Our data show that the GalNAc decorated NLC possess large numbers of ligands at their surface and suitable distances between them for efficient multivalent interaction with the ASGPR, and therefore promising liver-targeting efficiency

    Polymer masked-unmasked protein therapy: Identification of the active species after amylase-activation of dextrin-colistin conjugates.

    Get PDF
    Polymer masked–unmasked protein therapy (PUMPT) uses conjugation of a biodegradable polymer, such as dextrin, hyaluronic acid, or poly(l-glutamic acid), to mask a protein or peptide’s activity; subsequent locally triggered degradation of the polymer at the target site regenerates bioactivity in a controllable fashion. Although the concept of PUMPT is well established, the relationship between protein unmasking and reinstatement of bioactivity is unclear. Here, we used dextrin–colistin conjugates to study the relationship between the molecular structure (degree of unmasking) and biological activity. Size exclusion chromatography was employed to collect fractions of differentially degraded conjugates and ultraperformance liquid chromatography–mass spectrometry (UPLC–MS) employed to characterize the corresponding structures. Antimicrobial activity was studied using a minimum inhibitory concentration (MIC) assay and confocal laser scanning microscopy of LIVE/DEAD-stained biofilms with COMSTAT analysis. In vitro toxicity of the degraded conjugate was assessed using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. UPLC–MS revealed that the fully “unmasked” dextrin–colistin conjugate composed of colistin bound to at least one linker, whereas larger species were composed of colistin with varying lengths of glucose units attached. Increasing the degree of dextrin modification by succinoylation typically led to a greater number of linkers bound to colistin. Greater antimicrobial and antibiofilm activity were observed for the fully “unmasked” conjugate compared to the partially degraded species (MIC = 0.25 and 2–8 ÎŒg/mL, respectively), whereas dextrin conjugation reduced colistin’s in vitro toxicity toward kidney cells, even after complete unmasking. This study highlights the importance of defining the structure–antimicrobial activity relationship for novel antibiotic derivatives and demonstrates the suitability of LC–MS to aid the design of biodegradable polymer–antibiotic conjugates

    Observatoire régional du pneumocoque en région Pays de la Loire : résistance de Streptococcus pneumoniae aux antibiotiques en 2007

    Get PDF
    But de l’étudeEntre le 1er janvier et le 31 dĂ©cembre 2007, les 20 laboratoires participant Ă  l’observatoire rĂ©gional du pneumocoque (ORP) Pays de la Loire ont collectĂ© 331 souches invasives de Streptococcus pneumoniae afin d’étudier leur sensibilitĂ© aux antibiotiques et la rĂ©partition des sĂ©rogroupes/sĂ©rotypes. MĂ©thode Les concentrations minimales inhibitrices (CMI) de la pĂ©nicilline G, de l’amoxicilline et du cĂ©fotaxime ont Ă©tĂ© dĂ©terminĂ©es par le centre coordinateur, par la mĂ©thode de rĂ©fĂ©rence de diffusion en milieu gĂ©losĂ©. Les rĂ©sultats ont Ă©tĂ© interprĂ©tĂ©s selon les recommandations du CA-SFM. Les sensibilitĂ©s Ă  d’autres antibiotiques ont Ă©tĂ© Ă©tudiĂ©es et les typages des souches rĂ©alisĂ©es par le centre coordinateur. RĂ©sultats Trois cent trente et une souches ont Ă©tĂ© isolĂ©es en 2007. Elles provenaient de 30 liquides cĂ©phalorachidiens, 239 hĂ©mocultures, 53 pus d’otites moyennes aiguĂ«s et neuf liquides pleuraux. Le pourcentage de pneumocoques de sensibilitĂ© diminuĂ©e Ă  la pĂ©nicilline G (PSDP) Ă©tait de 39 % et restait plus Ă©levĂ© chez l’enfant (51 %) que chez l’adulte (35 %). Les PSDP Ă©taient souvent multirĂ©sistants, avec en particulier un pourcentage Ă©levĂ© de rĂ©sistance Ă  l’érythromycine (87,6 % contre 8,4 % pour les pneumocoques sensibles Ă  la pĂ©nicilline). Enfin, le sĂ©rogroupe majoritairement rencontrĂ© Ă©tait le sĂ©rogroupe 19 (29,6 % des isolats). Conclusion Une diminution des PSDP a Ă©tĂ© observĂ©e depuis 2001 et les souches de haut niveau de rĂ©sistance aux ÎČ-lactamines restent rares. Le pourcentage de PSDP observĂ©s en ORP Pays de la Loire demeure dans la moyenne nationale
    • 

    corecore