6 research outputs found

    Transcriptional activity, chromosomal distribution and expression effects of transposable elements in Coffea genomes

    Get PDF
    Plant genomes are massively invaded by transposable elements (TEs), many of which are located near host genes and can thus impact gene expression. In flowering plants, TE expression can be activated (de-repressed) under certain stressful conditions, both biotic and abiotic, as well as by genome stress caused by hybridization. In this study, we examined the effects of these stress agents on TE expression in two diploid species of coffee, Coffea canephora and C. eugenioides, and their allotetraploid hybrid C. arabica. We also explored the relationship of TE repression mechanisms to host gene regulation via the effects of exonized TE sequences. Similar to what has been seen for other plants, overall TE expression levels are low in Coffea plant cultivars, consistent with the existence of effective TE repression mechanisms. TE expression patterns are highly dynamic across the species and conditions assayed here are unrelated to their classification at the level of TE class or family. In contrast to previous results, cell culture conditions per se do not lead to the de-repression of TE expression in C. arabica. Results obtained here indicate that differing plant drought stress levels relate strongly to TE repression mechanisms. TEs tend to be expressed at significantly higher levels in non-irrigated samples for the drought tolerant cultivars but in drought sensitive cultivars the opposite pattern was shown with irrigated samples showing significantly higher TE expression. Thus, TE genome repression mechanisms may be finely tuned to the ideal growth and/or regulatory conditions of the specific plant cultivars in which they are active. Analysis of TE expression levels in cell culture conditions underscored the importance of nonsense-mediated mRNA decay (NMD) pathways in the repression of Coffea TEs. These same NMD mechanisms can also regulate plant host gene expression via the repression of genes that bear exonized TE sequences. (Résumé d'auteur

    Localization of 45S rDNA and telomeric sites on holocentric chromosomes of Rhynchospora tenuis Link (Cyperaceae)

    No full text
    Rhynchospora tenuis Link (Cyperaceae) is a weed widely distributed in Brazil that presents a small number of holocentric chromosomes (2n = 4) with some autopolyploid populations (2n = 8). The haploid number n = 2 is considered as a derivative of the base number x = 5. 45S rDNA probes and telomeric DNA were hybridized in both chromosome races of R. tenuis, looking for indications of chromosome fusions. The results showed that hybridization sites of the telomeric probe were restricted to end chromosome regions whereas rDNA sites were terminally located. The chromosome race with n = 4 exhibited a doubled number of sites, with similar size and location to the hybridized sequences, confirming its autopolyploid origin. Furthermore, the terminal location of the single 45S rDNA site in the 2n = 4 race suggested that disploid reduction in Rhynchospora, from n = 5 to n = 2, was followed by elimination or reorganization events, keeping the terminal distribution of these sites, as in an others species of the genus

    A karyotypic study of three southern Brazilian Asteraceae species using fluorescence in situ hybridization with a 45S rDNA probe and C-CMA3 banding

    No full text
    The Asteraceae, one of the largest families of flowering plants, contains about 1,100 genera and 20,000 species, and is well known for its extensive karyotypic variation. In this study, conventional Feulgen staining, C-CMA3 banding, and fluorescence in situ hybridization with a 45S rDNA probe were used to determine the chromosome number and the number and physical position of GC-rich heterochromatin and 45S rDNA sites in three Asteraceae weed species (Crepis japonica, Galinsoga parviflora and Chaptalia nutans). The three species exhibited karyotype differences in the chromosome number and shape, as a commom feature of Asteraceae. However, the 45S rDNA sites always occurred on the short chromosomal arms, associated with GC-heterochromatin. Althought of these differences, it suggests that commom features of plant karyotype are maintained

    Heterochromatin differentiation in holocentric chromosomes of Rhynchospora (Cyperaceae)

    No full text
    Holocentric chromosomes of six species of Rhynchospora, R. ciliata, R. pubera, R. riparia and R. barbata (2n = 10), R. nervosa (2n = 30) and R. globosa (2n = 36), were stained with CMA3/DAPI fluorochromes or treated with C-banding and sequentially stained with Giemsa or CMA3/DAPI. Variability in banding pattern was found among the species studied. Heterochromatin was observed on terminal and interstitial chromosome regions, indicating that the holocentric chromosomes of Rhynchospora show a heterochromatin distribution pattern similar to those plant monocentric chromosomes.<br>Cromossomos holocêntricos de seis espécies de Rhynchospora (R. ciliata, R. pubera, R. riparia e R. barbata (2n = 10), R. nervosa (2n = 30) and R. globosa (2n = 36)) foram corados com os fluorocromos CMA3/DAPI ou tratados para bandeamento C e seqüencialmente corados com Giemsa ou CMA3/DAPI. Variabilidade no padrão de bandas foi encontrada entre as espécies estudadas. A heterocromatina foi observada em regiões terminais e intersticiais dos cromossomos, indicando que os cromossomos holocêntricos de Rhynchospora mostram um padrão de distribuição de heterocromatina similar àqueles dos cromossomos monocêntricos de plantas
    corecore