22 research outputs found
A MicroRNA feedback circuit in midbrain dopamine neurons
MicroRNAs (miRNAs) are evolutionarily conserved, 18- to 25-nucleotide, non-protein coding transcripts that posttranscriptionally regulate gene expression during development. miRNAs also occur in postmitotic cells, such as neurons in the mammalian central nervous system, but their function is less well characterized. We investigated the role of miRNAs in mammalian midbrain dopaminergic neurons (DNs). We identified a miRNA, miR-133b, that is specifically expressed in midbrain DNs and is deficient in midbrain tissue from patients with Parkinson's disease. miR-133b regulates the maturation and function of midbrain DNs within a negative feedback circuit that includes the paired-like homeodomain transcription factor Pitx3. We propose a role for this feedback circuit in the fine-tuning of dopaminergic behaviors such as locomotion
Repressive LTR Nucleosome Positioning by the BAF Complex Is Required for HIV Latency
The SWI/SNF BAF chromatin remodeling complex generates a repressive nucleosome structure at the HIV LTR conducive to establishment and maintenance of HIV latency, while PBAF augments HIV transcription