132 research outputs found

    Rationality: a social-epistemology perspective

    Get PDF
    Both in philosophy and in psychology, human rationality has traditionally been studied from an "individualistic" perspective. Recently, social epistemologists have drawn attention to the fact that epistemic interactions among agents also give rise to important questions concerning rationality. In previous work, we have used a formal model to assess the risk that a particular type of social-epistemic interactions lead agents with initially consistent belief states into inconsistent belief states. Here, we continue this work by investigating the dynamics to which these interactions may give rise in the population as a whole

    Can Europium Atoms form Luminescent Centres in Diamond: A combined Theoretical-Experimental Study

    Full text link
    The incorporation of Eu into the diamond lattice is investigated in a combined theoretical-experimental study. The large size of the Eu ion induces a strain on the host lattice, which is minimal for the Eu-vacancy complex. The oxidation state of Eu is calculated to be 3+ for all defect models considered. In contrast, the total charge of the defect-complexes is shown to be negative -1.5 to -2.3 electron. Hybrid-functional electronic-band-structures show the luminescence of the Eu defect to be strongly dependent on the local defect geometry. The 4-coordinated Eu substitutional dopant is the most promising candidate to present the typical Eu3+ luminescence, while the 6-coordinated Eu-vacancy complex is expected not to present any luminescent behaviour. Preliminary experimental results on the treatment of diamond films with Eu-containing precursor indicate the possible incorporation of Eu into diamond films treated by drop-casting. Changes in the PL spectrum, with the main luminescent peak shifting from approximately 614 nm to 611 nm after the growth plasma exposure, and the appearance of a shoulder peak at 625 nm indicate the potential incorporation. Drop-casting treatment with an electronegative polymer material was shown not to be necessary to observe the Eu signature following the plasma exposure, and increased the background luminescence.Comment: 12 pages, 7 figures, 5 table

    Recent exposure to ultrafine particles in school children alters miR-222 expression in the extracellular fraction of saliva

    Get PDF
    Background: Ultrafine particles (< 100 nm) are ubiquitous present in the air and may contribute to adverse cardiovascular effects. Exposure to air pollutants can alter miRNA expression, which can affect downstream signaling pathways. miRNAs are present both in the intracellular and extracellular environment. In adults, miR-222 and miR-146a were identified as associated with particulate matter exposure. However, there is little evidence of molecular effects of ambient air pollution in children. This study examined whether exposure to fine and ultrafine particulate matter (PM) is associated with changes in the extracellular content of miR-222 and miR-146a of children. Methods: Saliva was collected from 80 children at two different time points, circa 11 weeks apart and stabilized for RNA preservation. The extracellular fraction of saliva was obtained by means of differential centrifugation and ultracentrifugation. Expression levels of miR-222 and miR-146a were profiled by qPCR. We regressed the extracellular miRNA expression against recent exposure to ultrafine and fine particles measured at the school site using mixed models, while accounting for sex, age, BMI, passive smoking, maternal education, hours of television use, time of the day and day of the week. Results: Exposure to ultrafine particles (UFP) at the school site was positively associated with miR-222 expression in the extracellular fraction in saliva. For each IQR increase in particles in the class room (+8504 particles/cm(3)) or playground (+ 28776 particles/cm(3)), miR-222 was, respectively 23.5 % (95 % CI: 3.5 %-41.1 %; p = 0.021) or 29.9 % (95 % CI: 10.6 %-49.1 %; p = 0.0027) higher. No associations were found between miR-146a and recent exposure to fine and ultrafine particles. Conclusions: Our results suggest a possible epigenetic mechanism via which cells respond rapidly to small particles, as exemplified by miR-222 changes in the extracellular fraction of saliva

    Placental promoter methylation of DNA repair genes and prenatal exposure to particulate air pollution: an ENVIRONAGE cohort study

    Get PDF
    BACKGROUND: Exposure to particulate air pollution has been linked with risk of carcinogenesis. Damage to repair pathways might have long-term adverse health effects. We aimed to investigate the association of prenatal exposure to air pollution with placental mutation rate and the DNA methylation of key placental DNA repair genes. METHODS: This cohort study used data from the ongoing ENVironmental Influence ON early AGEing (ENVIRONAGE) birth cohort, which enrols pairs of mothers and neonates (singleton births only) at the East-Limburg Hospital (Genk, Belgium). Placental DNA samples were collected after birth. We used bisulfite-PCR-pyrosequencing to investigate the mutation rate of Alu (a marker for overall DNA mutation) and DNA methylation in the promoter genes of key DNA repair and tumour suppressor genes (APEX1, OGG1, PARP1, ERCC1, ERCC4, p53, and DAPK1). We used a high-resolution air pollution model to estimate exposure to particulate matter with a diameter less than 2·5 μm (PM2·5), black carbon, and NO2 over the entire pregnancy on the basis of maternal address. Alu mutation was analysed with a linear regression model, and methylation values of the selected genes were analysed in mixed-effects models. Effect estimates are presented as the relative percentage change in methylation for an ambient air pollution increment of one IQR (ie, the difference between the first and third quartiles of exposure in the entire cohort). FINDINGS: 500 biobanked placental DNA samples were randomly selected from 814 pairs of mothers and neonates who were recruited to the cohort between Feb 1, 2010, and Dec 31, 2014, of which 463 samples met the pyrosequencing quality control criteria. IQR exposure increments were 3·84 μg/m3 for PM2·5, 0·36 μg/m3 for black carbon, and 5·34 μg/m3 for NO2. Among these samples, increased Alu mutation rate was associated with greater exposure to PM2·5 (r=0·26, p<0·0001) and black carbon (r=0·33, p<0·0001), but not NO2. Promoter methylation was positively associated with PM2·5 in APEX1 (7·34%, 95% CI 0·52 to 14·16, p=0·009), OGG1 (13·06, 3·88 to 22·24, p=0·005), ERCC4 (16·31%, 5·43 to 27·18, p=0·01), and p53 (10·60%, 4·46 to 16·74, p=0·01), whereas promoter methylation of DAPK1 (-12·92%, -22·35 to -3·49, p=0·007) was inversely associated with PM2·5 exposure. Black carbon exposure was associated with elevated promoter methylation in APEX1 (9·16%, 4·06 to 14·25, p=0·01) and ERCC4 (27·56%, 17·58 to 37·55, p<0·0001). Promoter methylation was not associated with pollutant exposure in PARP1 and ERCC1, and NO2 exposure was not associated with methylation in any of the genes studied. INTERPRETATION: Transplacental in-utero exposure to particulate matter is associated with an increased overall placental mutation rate (as measured with Alu), which occurred in concert with epigenetic alterations in key DNA repair and tumour suppressor genes. Our results suggest that exposure to air pollution can induce changes to fetal and neonatal DNA repair capacity. Future studies will be essential to elucidate whether these changes persist and have a role in carcinogenic insults later in life. The work is supported by the European Research Council (ERC-2012-StG.310898 and ERC-2011-StG. 282413) and by the Flemish Scientific Fund (FWO,G073315N/G082317N)

    Influence of diamond crystal orientation on the interaction with biological matter

    Get PDF
    Diamond has been a popular material for a variety of biological applications due to its favorable chemical, optical, mechanical and biocompatible properties. While the lattice orientation of crystalline material is known to alter the interaction between solids and biological materials, the effect of diamond's crystal orientation on biological applications is completely unknown. Here, we experimentally evaluate the influence of the crystal orientation by investigating the interaction between the , and surfaces of the single crystal diamond with biomolecules, cell culture medium, mammalian cells and bacteria. We show that the crystal orientation significantly alters these biological interactions. Most surprising is the two orders of magnitude difference in the number of bacteria adhering on surface compared to surface when both the surfaces were maintained under the same condition. We also observe differences in how small biomolecules attach to the surfaces. Neurons or HeLa cells on the other hand do not have clear preferences for either of the surfaces. To explain the observed differences, we theoretically estimated the surface charge for these three low index diamond surfaces and followed by the surface composition analysis using x-ray photoelectron spectroscopy (XPS). We conclude that the differences in negative surface charge, atomic composition and functional groups of the different surface orientations lead to significant variations in how the single crystal diamond surface interacts with the studied biological entities. (c) 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Prenatal Air Pollution and Newborns' Predisposition to Accelerated Biological Aging.

    Get PDF
    Importance: Telomere length is a marker of biological aging that may provide a cellular memory of exposures to oxidative stress and inflammation. Telomere length at birth has been related to life expectancy. An association between prenatal air pollution exposure and telomere length at birth could provide new insights in the environmental influence on molecular longevity. Objective: To assess the association of prenatal exposure to particulate matter (PM) with newborn telomere length as reflected by cord blood and placental telomere length. Design, Setting, and Participants: In a prospective birth cohort (ENVIRONAGE [Environmental Influence on Ageing in Early Life]), a total of 730 mother-newborn pairs were recruited in Flanders, Belgium between February 2010 and December 2014, all with a singleton full-term birth (≥37 weeks of gestation). For statistical analysis, participants with full data on both cord blood and placental telomere lengths were included, resulting in a final study sample size of 641. Exposures: Maternal residential PM2.5 (particles with an aerodynamic diameter ≤2.5 μm) exposure during pregnancy. Main Outcomes and Measures: In the newborns, cord blood and placental tissue relative telomere length were measured. Maternal residential PM2.5 exposure during pregnancy was estimated using a high-resolution spatial-temporal interpolation method. In distributed lag models, both cord blood and placental telomere length were associated with average weekly exposures to PM2.5 during pregnancy, allowing the identification of critical sensitive exposure windows. Results: In 641 newborns, cord blood and placental telomere length were significantly and inversely associated with PM2.5 exposure during midgestation (weeks 12-25 for cord blood and weeks 15-27 for placenta). A 5-µg/m3 increment in PM2.5 exposure during the entire pregnancy was associated with 8.8% (95% CI, -14.1% to -3.1%) shorter cord blood leukocyte telomeres and 13.2% (95% CI, -19.3% to -6.7%) shorter placental telomere length. These associations were controlled for date of delivery, gestational age, maternal body mass index, maternal age, paternal age, newborn sex, newborn ethnicity, season of delivery, parity, maternal smoking status, maternal educational level, pregnancy complications, and ambient temperature. Conclusions and Relevance: Mothers who were exposed to higher levels of PM2.5 gave birth to newborns with shorter telomere length. The observed telomere loss in newborns by prenatal air pollution exposure indicates less buffer for postnatal influences of factors decreasing telomere length during life. Therefore, improvements in air quality may promote molecular longevity from birth onward
    corecore