123 research outputs found

    Age-related changes in upper body contribution to braking forward locomotion in women

    Get PDF
    Introduction Gait termination is a transitory task that requires the lower body to produce braking forces and inhibit forward propulsion. However, it is still unknown whether the upper body plays an active role in braking of gait and whether this mechanism is impaired with ageing. Research question Do older women exhibit an impaired control of upper body segments during gait termination with respect to young women? Methods Ten young and 10 older women performed three gait termination trials at comfortable speed while fixing the gaze on a visual target. A 3D motion analysis system was used to measure head, trunk and pelvis angular displacement and velocity, and estimate neck, waist and hip moments through Plug-in Gait modeling. Cross-correlation analysis of kinematic waveforms between paired adjacent segments (head-trunk and trunk-pelvis) was performed to investigate upper body coordination. Surface EMG activity of erector spinae (L3), sternocleidomastoid and neck extensor muscles was recorded. Statistics was carried out by MANOVA. Results Older participants exhibited delayed peak extensor torques of neck, waist and hip compared to young participants, along with lower progression speed. Both groups showed a slight flexion of the trunk counteracted by a backward tilt of head and pelvis during braking. In addition, older women displayed a peculiar upper body coordination pattern, with the head coupling with trunk motion, as shown by cross-correlation. Older women displayed shorter lumbar erector spinae onset latency relative to last heel contact than young (16 ± 68 ms vs 92 ± 37 ms). Significance The upper body plays an active role in the braking of gait and this mechanism is impaired in older women. Moreover, the age-related coupling of head and trunk motion may produce an unbalancing effect on whole-body stability during the braking mechanism, thus leading to a higher risk of falls

    Knowledge discovery in databases of biomechanical variables: application to the sit to stand motor task

    Get PDF
    BACKGROUND: The interpretation of data obtained in a movement analysis laboratory is a crucial issue in clinical contexts. Collection of such data in large databases might encourage the use of modern techniques of data mining to discover additional knowledge with automated methods. In order to maximise the size of the database, simple and low-cost experimental set-ups are preferable. The aim of this study was to extract knowledge inherent in the sit-to-stand task as performed by healthy adults, by searching relationships among measured and estimated biomechanical quantities. An automated method was applied to a large amount of data stored in a database. The sit-to-stand motor task was already shown to be adequate for determining the level of individual motor ability. METHODS: The technique of search for association rules was chosen to discover patterns as part of a Knowledge Discovery in Databases (KDD) process applied to a sit-to-stand motor task observed with a simple experimental set-up and analysed by means of a minimum measured input model. Selected parameters and variables of a database containing data from 110 healthy adults, of both genders and of a large range of age, performing the task were considered in the analysis. RESULTS: A set of rules and definitions were found characterising the patterns shared by the investigated subjects. Time events of the task turned out to be highly interdependent at least in their average values, showing a high level of repeatability of the timing of the performance of the task. CONCLUSIONS: The distinctive patterns of the sit-to-stand task found in this study, associated to those that could be found in similar studies focusing on subjects with pathologies, could be used as a reference for the functional evaluation of specific subjects performing the sit-to-stand motor task

    Development of a wearable framework for body center of mass acceleration assessment in people with transfemoral amputation

    Get PDF
    The biomechanical study of the body center of mass (BCoM) may reveal crucial information about gait impairment in people with amputation (Al Abiad et al. 2020). The 3D kinetics of the BCoM are usua..

    Definition of an optimal model based on segments' contribution for the estimation of the acceleration of the center of mass in people with lower-limb amputation

    Get PDF
    In the context of rehabilitation of people with amputation, gait analysis provides information about gait alterations. In that perspective, the body center of mass (BCoM) trajectory, or its derivat..

    Investigating symmetry in amputee gait through the improved harmonic ratio: influence of the stride segmentation method

    Get PDF
    The quantification of gait symmetry is extremely important in several clinical contexts. Among the many indices used to describe gait symmetry, the Harmonic Ratio (HR), which is based on a stride-b..

    MOD derived pyrochlore films as buffer layer for all-chemical YBCO coated conductors

    Full text link
    We report a detailed study performed on La2Zr2O7 (LZO) pyrochlore material grown by Metal-Organic Decomposition (MOD) method as buffer layers for YBa2Cu3O7-x (YBCO) coated conductors. High quality epitaxial LZO thin films have been obtained on single crystal (SC) and Ni-5%at.W substrates. In order to evaluate structural and morphological properties, films have been characterized by means of X-ray diffraction analyses (XRD), atomic force microscope (AFM) and scanning electron microscope (SEM). Precursors solutions and heat treatments have been studied by thermogravimetric analyses (TG-DTA-DTG) and infrared spectra (FT-IR) with the aim of optimizing the annealing process. Thin films of YBCO have been deposited by pulsed laser ablation (PLD) on this buffer layers. The best results obtained on SC showed YBCO films with critical temperature values above 90 K, high self field critical current density values (Jc > 1 MA/cm2) and high irreversibility field values (8.3 T) at 77 K together with a rather high depinning frequency vp (0.5 T, 77 K)>44 GHz as determined at microwaves. The best results on Ni-5%at.W has been obtained introducing in the heat treatment a pyrolysis process at low temperature in air in order to remove the residual organic part of the precursor solution

    Estimation of 3D Body Center of Mass Acceleration and Instantaneous Velocity from a Wearable Inertial Sensor Network in Transfemoral Amputee Gait: A Case Study

    Get PDF
    The analysis of the body center of mass (BCoM) 3D kinematics provides insights on crucial aspects of locomotion, especially in populations with gait impairment such as people with amputation. In this paper, a wearable framework based on the use of different magneto-inertial measurement unit (MIMU) networks is proposed to obtain both BCoM acceleration and velocity. The proposed framework was validated as a proof of concept in one transfemoral amputee against data from force plates (acceleration) and an optoelectronic system (acceleration and velocity). The impact in terms of estimation accuracy when using a sensor network rather than a single MIMU at trunk level was also investigated. The estimated velocity and acceleration reached a strong agreement (ρ > 0.89) and good accuracy compared to reference data (normalized root mean square error (NRMSE) 0.89, NRMSE ≤ 14.0% in the mediolateral direction). Conversely, only the vertical component of the BCoM kinematics was accurately captured when considering a single MIMU. These results suggest that inertial sensor networks may represent a valid alternative to laboratory-based instruments for 3D BCoM kinematics quantification in lower-limb amputees.Don de la Fédération des Amputés de Guerre de France auprès de l'INI/CERH (contrat doctoral) Bourse mobilité cotutelle Université Franco-Italienne, VINCI C2-88

    Neuromechanics of repeated stepping with external loading in young and older women

    Get PDF
    An understanding of the neuromechanical responses to bench stepping with external loading is important for exercise prescription, especially in older women who are more at risk than men for disability. This study was designed to describe and compare such responses to repeated bench stepping with external loading between young and older women. Eight young (25 ± 2.7 years) and nine older (70 ± 3.3 years) medically stable women performed repeated stepping on a bench of either 20 or 25 cm either unloaded or with 2.5, 5, 7.5 or 10 % of body mass (BM) incorporated into a weighted vest. Ground reaction forces, peak power output and agonist-antagonist neuromuscular activation around the knee joint were evaluated. Peak power output was 44 % lower in the older than in the younger women. At a step height of 25 cm, peak power (PP) in the young women was 7 % greater with an external load of 7.5 % body mass compared with no loading, while in the older women there was a tendency for PP to be higher with an external load of 2.5 % body mass. Neuromuscular activation of the vastus lateralis muscle was 60 % higher in the older than in the young women. Older women performed repeated weighted-vest stepping with lower power output but greater knee muscle activation compared to younger counterparts. Peak power output during stepping may be achieved at 7.5 % BM loading in young women and either 2.5 or 10 % BM in older women, depending on desired step height

    Non-specific chronic low back pain elicits kinematic and neuromuscular changes in walking and gait termination

    Get PDF
    Background: Chronic low back pain (CLBP) is associated with an increased trunk stiffness and muscle coactivation duringwalking. However, it is still unclear whether CLBP individuals are unable to control neuromechanically their upper body motion during a sudden termination of gait (GT), which involves achallenging balancetransition from walking to standing.Research question: Does CLBP elicit neuromuscular and kinematic changes which are specific towalking and GT?Methods: Eleven individuals with non-specific CLBP and 11 healthy controls performed walking and sudden GT in response to an external visual cue. 3D kinematiccharacteristicsof thorax, lumbar and pelvis wereobtained, with measures of range of motion (ROM) and intra-subject variability of segmental movement being calculated. Electromyographic activity of lumbar and abdominal muscles was recorded to calculate bilateral as well as dorsoventral muscle coactivation.Results: CLBP group reported greater transverseROM of the lumbar segment during walking and GTcompared to healthy controls. Thorax sagittal ROM was higher in CLBP than healthy participants during GT. Greater overall movement variability in the transverseplane was observed in the CLBP group while walking, whereas GT produced greater variability of lumbar frontal motion. CLBP participants showed higher bilateral lumbar coactivation compared to healthy participants after the stopping stimulus delivery during GT.Significance: These results suggest that CLBP can elicit a wider and more variable movement of the upper body during walking and GT, especially in the transverseplane and at lumbar level. Alterations in upper body motor control appeared to depend on task, plane of motion and segmental level. Therefore, these findings should be considered by practitioners when screening before planning specific training interventions for recovery of motor control patterns in CLBP population

    Gait event detection using inertial measurement units in people with transfemoral amputation: a comparative study

    Get PDF
    In recent years, inertial measurement units (IMUs) have been proposed as an alternative to force platforms and pressure sensors for gait events (i.e., initial and final contacts) detection. While multiple algorithms have been developed, the impact of gait event timing errors on temporal parameters and asymmetry has never been investigated in people with transfemoral amputation walking freely on level ground. In this study, five algorithms were comparatively assessed on gait data of seven people with transfemoral amputation, equipped with three IMUs mounted at the pelvis and both shanks, using pressure insoles for reference. Algorithms’ performance was first quantified in terms of gait event detection rate (sensitivity, positive predictive value). Only two algorithms, based on shank mounted IMUs, achieved an acceptable detection rate (positive predictive value > 99%). For these two, accuracy of gait events timings, temporal parameters, and absolute symmetry index of stance-phase duration (SPD-ASI) were assessed. Whereas both algorithms achieved high accuracy for stride duration estimates (median errors: 0%, interquartile ranges < 1.75%), lower accuracy was found for other temporal parameters due to relatively high errors in the detection of final contact events. Furthermore, SPD-ASI derived from IMU-based algorithms proved to be significantly different to that obtained from insoles data. [Figure not available: see fulltext.].- INI/CERAH (contrat doctoral), financement par un don de la FAGF - Bourse VINCI C2-881 (mobilité cotutelle
    corecore