20 research outputs found

    Reliability of resting-state functional connectivity in the human spinal cord: Assessing the impact of distinct noise sources

    Get PDF
    The investigation of spontaneous fluctuations of the blood-oxygen-level-dependent (BOLD) signal has recently been extended from the brain to the spinal cord, where it has also generated initial interest from a clinical perspective. A number of resting-state functional magnetic resonance imaging (fMRI) studies have demonstrated robust functional connectivity between the time-series of BOLD fluctuations in bilateral dorsal horns and between those in bilateral ventral horns, in line with the functional neuroanatomy of the spinal cord. A necessary step prior to extension to clinical studies is assessing the reliability of such resting-state signals, which we aimed to do here in a group of 45 healthy young adults at the clinically prevalent field-strength of 3T. When investigating connectivity in the entire cervical spinal cord, we observed fair to good reliability for dorsal-dorsal and ventral-ventral connectivity, whereas reliability was poor for within- and between-hemicord dorsal-ventral connectivity. Considering how prone spinal cord fMRI is to noise, we extensively investigated the impact of distinct noise sources and made two crucial observations: removal of physiological noise led to a reduction in functional connectivity strength and reliability – due to the removal of stable and participant-specific noise patterns – whereas removal of thermal noise considerably increased the detectability of functional connectivity without a clear influence on reliability. Finally, we also assessed connectivity within spinal cord segments and observed that while the pattern of connectivity was similar to that of whole cervical cord, reliability at the level of single segments was consistently poor. Taken together, our results demonstrate the presence of reliable resting-state functional connectivity in the human spinal cord even after thoroughly accounting for physiological and thermal noise, but at the same time urge caution if focal changes in connectivity (e.g. due to segmental lesions) are to be studied, especially in a longitudinal manner

    Gradient system characterization by impulse response measurements with a dynamic field camera

    Full text link
    This work demonstrates a fast, sensitive method of characterizing the dynamic performance of MR gradient systems. The accuracy of gradient time-courses is often compromised by field imperfections of various causes, including eddy currents and mechanical oscillations. Characterizing these perturbations is instrumental for corrections by pre-emphasis or post hoc signal processing. Herein, a gradient chain is treated as a linear time-invariant system, whose impulse response function is determined by measuring field responses to known gradient inputs. Triangular inputs are used to probe the system and response measurements are performed with a dynamic field camera consisting of NMR probes. In experiments on a whole-body MR system, it is shown that the proposed method yields impulse response functions of high temporal and spectral resolution. Besides basic properties such as bandwidth and delay, it also captures subtle features such as mechanically induced field oscillations. For validation, measured response functions were used to predict gradient field evolutions, which was achieved with an error below 0.2%. The field camera used records responses of various spatial orders simultaneously, rendering the method suitable also for studying cross-responses and dynamic shim systems. It thus holds promise for a range of applications, including pre-emphasis optimization, quality assurance, and image reconstruction

    Feasibility of spiral fMRI based on an LTI gradient model

    No full text
    Spiral imaging is very well suited for functional MRI, however its use has been limited by the fact that artifacts caused by gradient imperfections and B0 inhomogeneity are more difficult to correct compared to EPI. Effective correction requires accurate knowledge of the traversed k-space trajectory. With the goal of making spiral fMRI more accessible, we have evaluated image reconstruction using trajectories predicted by the gradient impulse response function (GIRF), which can be determined in a one-time calibration step. GIRF-predicted reconstruction was tested for high-resolution (0.8 mm) fMRI at 7T. Image quality and functional results of the reconstructions using GIRF-prediction were compared to reconstructions using the nominal trajectory and concurrent field monitoring. The reconstructions using nominal spiral trajectories contain substantial artifacts and the activation maps contain misplaced activation. Image artifacts are substantially reduced when using the GIRF-predicted reconstruction, and the activation maps for the GIRF-predicted and monitored reconstructions largely overlap. The GIRF reconstruction provides a large increase in the spatial specificity of the activation compared to the nominal reconstruction. The GIRF-reconstruction generates image quality and fMRI results similar to using a concurrently monitored trajectory. The presented approach does not prolong or complicate the fMRI acquisition. Using GIRF-predicted trajectories has the potential to enable high-quality spiral fMRI in situations where concurrent trajectory monitoring is not available.ISSN:1053-8119ISSN:1095-957

    Single-shot spiral imaging enabled by an expanded encoding model: demonstration in diffusion MRI

    Full text link
    Purpose The purpose of this work was to improve the quality of single-shot spiral MRI and demonstrate its application for diffusion-weighted imaging. Methods Image formation is based on an expanded encoding model that accounts for dynamic magnetic fields up to third order in space, nonuniform static B0, and coil sensitivity encoding. The encoding model is determined by B0 mapping, sensitivity mapping, and concurrent field monitoring. Reconstruction is performed by iterative inversion of the expanded signal equations. Diffusion-tensor imaging with single-shot spiral readouts is performed in a phantom and in vivo, using a clinical 3T instrument. Image quality is assessed in terms of artefact levels, image congruence, and the influence of the different encoding factors. Results Using the full encoding model, diffusion-weighted single-shot spiral imaging of high quality is accomplished both in vitro and in vivo. Accounting for actual field dynamics, including higher orders, is found to be critical to suppress blurring, aliasing, and distortion. Enhanced image congruence permitted data fusion and diffusion tensor analysis without coregistration. Conclusion Use of an expanded signal model largely overcomes the traditional vulnerability of spiral imaging with long readouts. It renders single-shot spirals competitive with echo-planar readouts and thus deploys shorter echo times and superior readout efficiency for diffusion imaging and further prospective applications

    A field camera for MR sequence monitoring and system analysis

    Full text link
    PURPOSE: MR image formation and interpretation relies on highly accurate dynamic magnetic fields of high fidelity. A range of mechanisms still limit magnetic field fidelity, including magnet drifts, eddy currents, and finite linearity and stability of power amplifiers used to drive gradient and shim coils. Addressing remaining errors by means of hardware, sequence, or signal processing optimizations, calls for immediate observation by magnetic field monitoring. The present work presents a stand-alone monitoring system delivering insight into such field imperfections for MR sequence and system analysis. METHODS: A flexible NMR field probe-based stand-alone monitoring system, built on a software-defined-radio approach, is introduced and used to sense field dynamics up to third-order in space in a selection of situations with different time scales. RESULTS: Highly sensitive trajectories are measured and successfully used for image reconstruction. Further field perturbations due to mechanical oscillations and thermal field drifts following demanding gradient use and external interferences are studied. CONCLUSION: A flexible and versatile monitoring system is presented, delivering camera-like access to otherwise hardly accessible field dynamics with nanotesla resolution. Its stand-alone nature enables field analysis even during unknown MR system states. Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc
    corecore