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Abstract 32 

The investigation of spontaneous fluctuations of the blood-oxygen-level-dependent (BOLD) 33 
signal has recently been extended from the brain to the spinal cord, where it has also generated 34 
initial interest from a clinical perspective. A number of resting-state functional magnetic 35 
resonance imaging (fMRI) studies have demonstrated robust functional connectivity between 36 
the time-series of BOLD fluctuations in bilateral dorsal horns and between those in bilateral 37 
ventral horns, in line with the functional neuroanatomy of the spinal cord. A necessary step 38 
prior to extension to clinical studies is assessing the reliability of such resting-state signals, 39 
which we aimed to do here in a group of 45 healthy young adults at the clinically prevalent 40 
field-strength of 3T. When investigating connectivity in the entire cervical spinal cord, we 41 
observed fair to good reliability for dorsal-dorsal and ventral-ventral connectivity, whereas 42 
reliability was poor for within- and between-hemicord dorsal-ventral connectivity. Considering 43 
how prone spinal cord fMRI is to noise, we extensively investigated the impact of distinct noise 44 
sources and made two crucial observations: removal of physiological noise led to a reduction 45 
in functional connectivity strength and reliability – due to the removal of stable and participant-46 
specific noise patterns – whereas removal of thermal noise considerably increased the 47 
detectability of functional connectivity without a clear influence on reliability. Finally, we also 48 
assessed connectivity within spinal cord segments and observed that while the pattern of 49 
connectivity was similar to that of whole cervical cord, reliability at the level of single segments 50 
was consistently poor. Taken together, our results demonstrate the presence of reliable resting-51 
state functional connectivity in the human spinal cord even after thoroughly accounting for 52 
physiological and thermal noise, but at the same time urge caution if focal changes in 53 
connectivity (e.g. due to segmental lesions) are to be studied, especially in a longitudinal 54 
manner.  55 
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1. Introduction 56 

Over the last decades, the spatiotemporal organization of spontaneous fluctuations of BOLD 57 
signals in the brain has been widely investigated and intrinsic resting-state networks have been 58 
considered as building blocks of brain function that are relevant for cognition and behavior 59 
(Deco et al., 2011; Fox & Raichle, 2007; Petersen & Sporns, 2015; Raichle et al., 2001; Wig, 60 
2017). With a delay of about 20 years and on a much smaller scale, a similar perspective has 61 
opened up for spinal cord function, with resting-state fMRI studies demonstrating that 62 
spontaneous BOLD fluctuations of the spinal cord are spatiotemporally organized as well 63 
(Barry et al., 2014; Barry et al., 2016; Barry et al., 2018; Conrad et al., 2018; Eippert et al., 64 
2017a; Harita & Stroman, 2017; Harita et al., 2018; Hu et al., 2018; Ioachim et al., 2019; 65 
Ioachim et al., 2020; Kinany et al., 2020; Kong et al., 2014; Liu et al., 2016a; Liu et al., 2016b; 66 
Martucci et al., 2019; Martucci et al., 2021; San Emeterio Nateras et al., 2016; Vahdat et al., 67 
2020; Weber et al., 2018; Wei et al., 2009; for a review see Harrison et al., 2021). More 68 
specifically, region-of-interest (ROI) based functional connectivity techniques have revealed 69 
statistically significant connectivity between the time-series of bilateral ventral horns as well 70 
as between bilateral dorsal horns in humans and similar functional connectivity patterns have 71 
been identified in non-human primates and rodents as well (Chen et al., 2015; Wu et al., 2018; 72 
Wu et al., 2019). Since the dorsal horns receive somatosensory information from the body and 73 
the ventral horns contain cell bodies of the motor neurons (Hochman, 2007), the observed 74 
connectivity patterns appear to be well aligned with the spinal cord’s functional organization. 75 

Resting-state fMRI metrics are often considered in the context of biomarker development 76 
(Hohenfeld et al., 2018; Parkes et al., 2018; Pfannmöller & Lotze, 2019), i.e. for monitoring 77 
and prediction of disease progression or treatment response. This approach could obviously be 78 
extended towards the spinal cord as well (e.g. in the context of recovery after spinal cord injury) 79 
and first steps have already been taken in this direction by assessing changes in spinal cord 80 
resting-state connectivity in sensory and motor disorders with diffuse or localized spinal 81 
pathology (Chen et al., 2015; Combes et al., 2022; Conrad et al., 2018; Martucci et al., 2019). 82 
However, before the clinical utility of resting-state metrics can be established, a necessary first 83 
step is to assess their reliability as well as the factors that influence it. In this respect, it is 84 
important to note that only a very limited number of studies have investigated the test-retest 85 
reliability (i.e., the stability of a measure under repeated measures; Shrout and Fleiss, 1979; 86 
Shrout and Lane, 2012) of resting-state networks in the human spinal cord: only one study at 87 
7T (Barry et al. 2016) and four studies at the clinically-relevant field strength of 3T (Barry et 88 
al., 2018; San Emeterio Nateras et al., 2016; Liu et al., 2016; Hu et al., 2018), though these 89 
latter ones had rather small sample sizes (N=1 and N=10). 90 

These studies provided an initial assessment of test-retest reliability, but did not investigate the 91 
factors that might shape reliability in-depth. Given the susceptibility of spinal cord fMRI to the 92 
detrimental influence of noise (Cohen-Adad et al., 2010; for review, see Fratini et al., 2014; 93 
Eippert et al., 2017b), it is however essential to understand how distinct noise sources might 94 
impact spinal cord resting-state functional connectivity and its reliability – a relationship that, 95 
even in the brain, is not necessarily straightforward (Birn et al., 2014; Noble et al., 2019; Shirer 96 
et al., 2015). A first noise source of relevance is physiological noise of cardiac and respiratory 97 
origin, to which spinal cord fMRI is especially prone (Harita & Stroman, 2017; Piché et al., 98 
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2009; Verma & Cohen-Adad, 2014). Physiological noise of structured nature is particularly 99 
detrimental for resting-state fMRI studies as one cannot explicitly model the intrinsic activity 100 
of interest (unlike in task-based fMRI), which makes it more challenging to attribute the 101 
observed results to the underlying neuronal activity instead of non-neural confounds (Birn, 102 
2012; Birn et al., 2014; Murphy et al., 2013). Another major source of noise that influences 103 
fMRI measurements is thermal noise (Edelstein et al., 1986; Hoult & Richards, 1976), which 104 
has not been investigated in the context of spinal cord fMRI to our knowledge. While thermal 105 
noise – whose principal source is the thermal fluctuations within the subject that is imaged, 106 
followed by noise due to scanner electronics – is not structured, its removal may further benefit 107 
the detectability of BOLD signals of interest (Ades-Aron et al., 2021a; Adhikari et al., 2019; 108 
Vizioli et al., 2021). 109 

Considering all the above, the aims of the current study are as follows. First, we aim to replicate 110 
previous resting-state fMRI functional connectivity results and assess their test-retest reliability 111 
in a large sample (N=45) at the clinically-relevant field strength of 3T across the entire cervical 112 
spinal cord. Second, we aim to assess how structured (physiological) and unstructured 113 
(thermal) noise sources impact functional connectivity and its reliability. Finally, we aim to 114 
investigate more localized aspects of functional connectivity and its reliability, namely within 115 
each spinal cord segment, i.e. the macro-scale building blocks of spinal cord organization.116 
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2. Methods 117 

2.1. Participants 118 

This study is based on the participant sample of Kaptan et al. (2022), which contained data 119 
from 48 healthy participants. As our focus in the current study was on assessing the influence 120 
of different noise sources on the reliability of resting-state functional connectivity, data from 121 
three participants had to be discarded due to technical problems in the acquisition of peripheral 122 
physiological data (i.e., corrupted ECG-recordings), thus leading to a final sample size of 45 123 
participants (20 females, age: 27 ± 3.8). All participants provided written informed consent and 124 
the study was approved by the Ethics Committee at the Medical Faculty of the University of 125 
Leipzig. 126 

 127 

2.2. Data acquisition 128 

All measurements were performed on a 3T whole-body Siemens Prisma MRI System 129 
(Siemens, Erlangen, Germany) equipped with a whole-body radio-frequency (RF) transmit 130 
coil, a 64-channel RF head-and-neck coil, and a 32-channel RF spine-array, using the head coil 131 
element groups 5–7, the neck coil element groups 1 and 2, and spine coil element group 1 (all 132 
receive-only). Before the start of data acquisition, typical instructions for spinal MRI studies 133 
were given to the participants (i.e., they were told not to move, to avoid excessive swallowing 134 
and to breathe normally; see Cohen-Adad et al., 2021). The here-described data are part of a 135 
larger methodological project: we thus only describe the relevant parts – two functional 136 
acquisitions and one structural acquisition – and refer the interested reader to the 137 
methodological publication for further details on this dataset (Kaptan et al., 2022).  138 

Functional runs consisted of 250 single-shot 2D gradient-echo EPI volumes (acquisition time: 139 
~10min) that covered the spinal cord from the 2nd cervical vertebra to the 1st thoracic vertebra 140 
and were acquired with the following parameters: slice orientation: transverse oblique; number 141 
of slices: 24; slice thickness: 5.0mm; field of view: 128×128mm2, in-plane resolution: 1.0 × 142 
1.0mm2; TR: 2312ms; TE: 40ms; excitation flip angle: 84°, GRAPPA acceleration factor: 2; 143 
partial Fourier factor: 7/8; phase-encoding direction: anterior-to-posterior; echo spacing: 144 
0.93ms; bandwidth per pixel: 1220 Hz/Pixel. Both functional runs employed slice-specific z-145 
shimming (Finsterbusch et al., 2012) in order to overcome the signal-loss that occurs due to 146 
local magnetic field inhomogeneities. The two runs only differed according to the selection 147 
method of slice-specific z-shims: this occurred either manually or automatically (Kaptan et al., 148 
2022). The two runs were separated from each other by a maximum of ~10 minutes, did not 149 
show a systematic order difference (the run with manual selection of z-shims occurred before 150 
the run with automatic selection of z-shims in 23 of the 45 participants) and exhibited highly 151 
similar gray matter tSNR (run with manual selection of z-shims: 15.7 ± 1.3; run with automatic 152 
selection of z-shims: 15.4 ± 1.3; mean ± standard deviation). During each of the runs, 153 
participants were presented with a white cross-hair on a gray background, which they were 154 
asked to fixate on. 155 

Additionally, a high-resolution T2-weighted acquisition (3D sagittal SPACE sequence, Cohen-156 
Adad et al., 2021; 64 sagittal slices; resolution: 0.8×0.8×0.8mm3; field-of-view: 256×256mm2; 157 
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TE: 120ms; flip angle: 120°; TR: 1500ms; GRAPPA acceleration factor: 3; acquisition time: 158 
4.02min) was obtained for registration purposes. 159 

During fMRI data acquisition, we also acquired peripheral physiological signals in order to 160 
perform physiological noise modelling: respiratory data were acquired via a breathing belt and 161 
cardiac data were acquired via ECG electrodes (BrainAmp ExG system; Brain Products GmbH, 162 
Gilching, Germany). Data acquisition occurred with a sampling-rate of 1kHz and included 163 
scanner triggers to allow for synchronization of data streams. 164 

 165 

2.3. Data preprocessing 166 

Preprocessing steps were performed using MATLAB (version 2021a), EEGLAB (version 167 
2019.0; Delorme & Makeig, 2004), FMRIB Software Library (FSL; version 6.0.3; Jenkinson 168 
et al., 2012), and Spinal Cord Toolbox (SCT; version 4.2.2; De Leener et al., 2017). 169 

 170 

2.3.1. Preprocessing of physiological data 171 

ECG data were processed within EEGLAB (Delorme & Makeig, 2004) using the FMRIB plug-172 
in (https://fsl.fmrib.ox.ac.uk/eeglab/fmribplugin/). This algorithm allows for the correction of 173 
gradient artifacts in the ECG signal caused by the switching of magnetic gradients during fMRI 174 
acquisitions (Niazy et al., 2005). R-peaks were automatically detected after correction and 175 
where necessary manual corrections were carried out using in-house MATLAB scripts. 176 

We calculated the heart-period (i.e., R-R interval) in milliseconds as the average difference in 177 
time between each R peak for each functional run. In addition to that, we assessed heart-period 178 
variability by calculating the standard deviation of R-R intervals (Shaffer & Ginsberg, 2017) 179 
within each of the two functional runs. 180 

The respiratory period was calculated as described by Bach and colleagues (2016). More 181 
specifically, the respiration traces were i) mean-centered, ii) filtered with a band pass filter 182 
(cut-off frequencies: 0.01 Hz and 0.6 Hz), and iii) median filtered over 1s. The start of 183 
inspiration was defined as a negative zero-crossing. After each detected cycle, a 1s refractory 184 
period was imposed, to account for residual signal noise that may lead to the occurrence of 185 
several zero-crossings on the same respiratory cycle (Bach et al., 2016). We report the mean 186 
and standard deviation of the respiratory period in seconds. 187 

 188 

2.3.2. Preprocessing of fMRI data 189 
2.3.2.1. Motion-correction 190 

For each functional run, a slice-wise motion correction procedure with regularization in z-191 
direction (as implemented in SCT, “sct_fmri_moco”) was employed in two steps. First, the 250 192 
volumes of each run were averaged to create a mean image, and this mean image was used to 193 
automatically determine the centerline of the cord. A cylindrical mask (with a diameter of 194 
41mm) was generated based on this centerline and used during the motion-correction procedure 195 
to ensure that regions moving independently from the cord would not adversely impact the 196 
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motion-correction. The previously-created mean image was used as a target for the first 197 
iteration of slice-wise motion correction with a 2nd degree polynomial and spline interpolation. 198 
In the second step, the mean of motion-corrected time-series from the first step served as a 199 
target image for the second iteration of motion-correction, which was applied to the raw images 200 
(with the same algorithm parameters). 201 

 202 

2.3.2.2. Segmentation 203 

For the functional runs, binary masks/segmentations of the spinal cord were manually created 204 
based on each mean image after motion-correction. We employed a manual segmentation 205 
instead of an automated segmentation to ensure that the segmentation quality did not adversely 206 
affect the registration procedure (see below), which was dependent on the segmentation. 207 

Binary masks/segmentations of the spinal cord obtained from the T2-weighted images were 208 
created automatically using the ‘sct_deepseg’ approach of SCT (Gros et al., 2019). 209 

 210 

2.3.2.3. Registration 211 

Functional connectivity analyses were performed in native space to make them comparable to 212 
those of a previous study on resting-state functional connectivity and its reliability by Barry 213 
and colleagues (2016). However, a registration procedure to the PAM50 template space (De 214 
Leener et al., 2018) was still performed in order to obtain the warping fields that allowed to 215 
bring region-specific probabilistic masks from PAM50 template space to each individual’s 216 
native space (‘sct_warp_template’). 217 

First, anatomical T2-weighted images were normalized to the template space with the 218 
following three consecutive steps ('sct_register_to_template’): i) the spinal cord was 219 
straightened using the binary cord segmentation, ii) the automatically labelled C2-C7 vertebral 220 
levels (created via ‘sct_label_vertebrae’, with manual corrections when deemed necessary) 221 
were used for the vertebral alignment between the template and the anatomical images, iii) the 222 
anatomical images were registered to the template using non-rigid segmentation-based 223 
transformations. 224 

Second, the T2-weighted PAM50 template was registered to the mean of motion-corrected 225 
functional images using non-rigid transformations (‘sct_register_multimodal’; with the initial 226 
step using the inverse warping field obtained from the registration of the T2-weighted 227 
anatomical image to the template image). The resulting warping fields obtained from this 228 
registration were then applied to the PAM50 probabilistic gray matter and segmental level 229 
masks to bring them into the native space where connectivity estimation and statistical analyses 230 
were carried out. 231 

 232 

2.3.3. Denoising 233 
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As we aimed to investigate the effect of various noise sources on resting-state functional 234 
connectivity and its reliability, we employed different denoising pipelines to assess the impact 235 
of specific noise sources. 236 

 237 

2.3.3.1. Physiological noise 238 

First, we employed a processing pipeline that does not explicitly account for any specific noise 239 
source – from now on we refer to this pipeline as ‘baseline’ throughout the manuscript. The 240 
baseline denoising pipeline consisted of i) motion-correction, ii) high-pass filtering (with a 241 
100s cut-off), and iii) “motion-censoring”. Censoring was necessary to ensure that outlier 242 
volumes that were either inadvertently introduced by the motion-correction algorithm or that 243 
occurred due to a sudden large movement of participants did not artificially inflate the 244 
connectivity estimates (as outlier volumes can create spikes in the signal time-series of ROIs). 245 
The outlier volumes were determined using the dVARS (the root mean square difference 246 
between successive volumes; Smyser et al., 2011) and refRMS (root mean square intensity 247 
difference of each volume to the reference volume) metrics as implemented in the 248 
‘fsl_motion_outliers’ function of FSL. Volumes presenting with dVARS or refRMS values two 249 
standard deviations above the mean values of each run were selected as outliers. In the later 250 
occurring GLM estimation, these outlier volumes were modelled as individual regressors (on 251 
average, 4.67 ± 3.15 volumes were identified as outliers across all participants and sessions, 252 
i.e. less than 2% of the volumes). 253 

Second, physiological noise modelling (PNM; Brooks et al., 2008) was used to obtain slice-254 
specific regressors to account for physiological confounds. PNM is a modification of the 255 
RETROICOR approach (Glover et al., 2000) and creates slice-specific regressors via 256 
calculating their phase for each slice relative to the cardiac and respiratory cycles by modelling 257 
them via Fourier basis series with a combination of sine and cosine harmonics (Brooks et al., 258 
2008; Kong et al., 2012). We utilized regressors up to the fourth harmonic – resulting in a total 259 
of 16 regressors – to account for cardiac and respiratory processes, and another 16 regressors 260 
to account for their interactions, resulting in a total of 32 regressors (Brooks et al., 2008; Kong 261 
et al., 2012). In addition to that, a slice-specific CSF regressor was created (as implemented in 262 
PNM) by extracting the signal from the voxels whose variance were in the top 10 percentile 263 
within a region including both the spinal cord and CSF space. Note that all noise regressors 264 
were high-pass filtered with the same 100s cut-off prior to noise regression to prevent spectral 265 
misspecification (Hallquist et al., 2013). 266 

Third, a specific set of regressors that account for different physiological noise sources was 267 
then added to the baseline denoising pipeline, and regressed out from the functional data using 268 
FEAT (FMRI Expert Analysis Tool; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT), resulting in 269 
the seven different denoising pipelines listed below: 270 

i. Baseline (consisting of motion-correction, high-pass filtering and censoring) 271 

ii. Baseline + slice-specific motion-correction estimates (x- and y- translation; automatically 272 
obtained from the slice-wise motion correction procedure) 273 
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iii. Baseline + CSF signal 274 

iv. Baseline + eight respiratory regressors 275 

v. Baseline + eight cardiac regressors 276 

vi. Baseline + thirty-two PNM regressors (including eight respiratory regressors, eight 277 
cardiac regressors, and 16 interaction regressors) 278 

vii. Maximal (motion-correction, high-pass filtering, censoring, slice-specific motion 279 
correction regressors, 32 PNM regressors and a CSF regressor) 280 

The residuals obtained from each of the denoising pipelines were then used for further analysis.  281 
Please note that while we did not include a pre-whitening step in our above-mentioned 282 
denoising pipelines, we assessed the impact of pre-whitening carried out using FILM 283 
(FMRIB’s Improved Linear Model with local autocorrelation correction; Woolrich et al., 2001) 284 
by comparing maximal denoising with maximal denoising + FILM pre-whitening (see Table 285 
S1). 286 

 287 

2.3.3.2. Thermal noise 288 

Another major source of noise that contributes to the variability of fMRI time-series is zero-289 
mean Gaussian thermal noise which arises from thermal fluctuations within the participant, as 290 
well as scanner electronics (Edelstein et al., 1986; Hoult & Richards, 1976). Here, we employed 291 
two different approaches to address the influence of thermal noise: spatial smoothing and 292 
denoising based on Marchenko-Pastur Principle Component Analysis (MP-PCA; Marčenko & 293 
Pastur, 1967; Veraart et al., 2016a; Veraart et al., 2016b), either of which was employed before 294 
GLM-based physiological noise correction via the maximal denoising pipeline was carried out. 295 
Spatial smoothing was implemented in FEAT with isotropic Gaussian kernels of either 2mm 296 
or 4mm FWHM. Non-local MP-PCA was implemented using an openly available MATLAB 297 
algorithm (http://github.com/NYU-DiffusionMRI/mppca_denoise; Ades-Aron et al., 2021b) 298 
and was applied to the entire fMRI time-series data (dimensions [x, y, z, time]: 128 × 128 × 24 299 
× 250) before motion correction. In the context of MRI, MP-PCA was originally evaluated for 300 
thermal noise reduction in diffusion MRI data (Veraart et al., 2016a; Veraart et al., 2016b), but 301 
has recently also been applied to task-based (Ades-Aron et al., 2021a) and resting-state 302 
(Adhikari et al., 2019) fMRI data of the brain, aiming to minimize the contributions of thermal 303 
noise to fMRI time series without altering the spatial resolution. 304 

Finally, in order to estimate the effect of thermal noise removal – via smoothing or MP-PCA –305 
on the data’s spatial smoothness, we estimated the spatial autocorrelation function of the 306 
residuals after each of four processing pipelines (maximal, maximal + MP-PCA, maximal + 307 
smoothing 2mm, maximal + smoothing 4mm) using the 3dFWHMx function of AFNI (Cox et 308 
al., 2017). The smoothness estimates were derived from AFNI’s mixed gaussian and mono-309 
exponential decay model and we report the effective (combined) smoothness value after each 310 
denoising approach (already incorporating smoothness changes introduced during motion 311 
correction). 312 

 313 
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2.4. Statistical analysis 314 

2.4.1. Functional connectivity calculation 315 

Functional connectivity was assessed using an ROI-based approach. The ROI masks were 316 
created using the probabilistic PAM50 gray matter masks that were warped from template 317 
space to the native space of each participant (see section 2.3.2.3). In native space, the 318 
probabilistic gray matter masks were thresholded at 70% for each slice separately to ensure 319 
that there were no voxels shared between distinct ROIs. Within a slice, the ROIs typically 320 
contained 1.6 and 1.5 voxels in the left and right dorsal horns, and 1.9 and 1.9 voxels in the left 321 
and right ventral horns, respectively (average over slices and participants).  Slice-specific time 322 
courses were then extracted via averaging the signal over the voxels within each of the four 323 
ROIs (left dorsal horn, left ventral horn, right dorsal horn, and right ventral horn). 324 

Next, slice-wise correlations between ROIs were calculated using the Pearson correlation 325 
coefficient. In order to address the effects of any remaining global signal fluctuations that might 326 
be shared between the ROIs (e.g. residual movement or physiological noise effects) we also 327 
calculated partial correlation coefficients (see Figure S1). The dorsal-ventral correlations 328 
within each hemicord (left dorsal with left ventral and right dorsal with right ventral), as well 329 
as between hemicords (left dorsal with right ventral and right dorsal with left ventral) were 330 
averaged, yielding one within-hemicord and one between-hemicord dorsal-ventral connectivity 331 
value for each participant (similar to Eippert et al. 2017a, who did not observe any significant 332 
laterality differences). The slice-wise correlation coefficients were then averaged over all slices 333 
along the superior-inferior axis of the cord, yielding four functional connectivity estimates for 334 
each participant: dorsal-dorsal, ventral-ventral, dorsal-ventral within-hemicord and dorsal-335 
ventral between-hemicord. This averaging of correlation values might lead to a slight 336 
conservative bias in our results as we did not perform Fischer’s z-transformation prior to 337 
averaging, however, this is assumed to be negligible (Silver & Dunlap, 1987; Corey et al., 338 
1998; Eippert et al., 2017a). Note that only those slices that were assigned to C3-T1 339 
probabilistic segmental levels were included, resulting in a variable number of slices across 340 
different participants due to the anatomy of the participants (depending on the coverage of the 341 
EPI slice-stack during acquisition). At the group-level, we report the mean r value, i.e. averaged 342 
across two sessions and averaged across participants. 343 

The significance of the functional connectivity estimates or the difference between them 344 
(depending on the aim of the analysis) were assessed using permutation-based tests 345 
implemented in the Permutation Analysis of Linear Models software (PALM; Winkler et al., 346 
2014). The number of permutations was set to 10,000 and we report two-tailed family-wise 347 
error (FWE) corrected p-values (adjusted according to the number of tests performed). 348 

 349 

2.4.1.1. Within-segment functional connectivity 350 
In order to provide insights into the segment-wise organization of functional connectivity, we 351 
also investigated the functional connectivity within each spinal segment covered by our 352 
imaging volume; those included all segments between the third cervical (C3) and first thoracic 353 
segment (T1). Therefore, probabilistic segmental levels from PAM50 template space were first 354 
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warped to each participant’s native space (see section 2.3.2.3). Then, to guarantee that there 355 
was no overlap between neighboring segments, the slice with the highest probability of 356 
belonging to a specific segmental level and the slice above and below were assigned to the 357 
corresponding segment. This procedure ensured that there were a similar number of slices for 358 
each segment and led to a 15 mm segment length, which is in line with empirical measurements 359 
of cervical segment length based on post-mortem data (Ko et al., 2004). Slice-wise functional 360 
connectivity was calculated as described above and the correlation values for slices within each 361 
segment were averaged. The connectivity strength for each segment was tested against 0 via 362 
permutation tests as described above (see section 2.4.1). Please note that for all within-segment 363 
analyses, we used data that had undergone the maximal denoising pipeline for physiological 364 
noise correction and were also corrected for thermal noise via MP-PCA, as our whole-cord 365 
analyses had suggested that this was the optimal processing pipeline. 366 

 367 

2.4.2. tSNR and explained variance 368 

In order to provide further insights into the effects of the removal of various noise sources, we 369 
also calculated the gray matter temporal signal-to-noise ratio (tSNR) and the explained 370 
variance of the gray-matter time-series for each denoising step (please note that motion 371 
correction, high-pass filtering and motion-censoring was always performed). Voxelwise gray-372 
matter tSNR values were calculated for each functional run via dividing each voxel’s temporal 373 
mean by its temporal standard deviation (Parrish et al., 2000). The impact of various noise 374 
sources on gray-matter tSNR was assessed by comparing the tSNR values obtained after each 375 
denoising pipeline to the baseline denoising procedure – in addition to reporting descriptive 376 
values (% change) we also employed permutation-based tests as described above (see section 377 
2.4.1) and report FWE-corrected p-values. Following Birn et al. (2014), the variance of gray-378 
matter time-series explained by each denoising pipeline (R2) was calculated by computing the 379 
fractional reduction in signal variance. tSNR and explained variance for each gray matter 380 
region were extracted using the native-space thresholded and binarized PAM50 gray matter 381 
masks that were also used to calculate functional connectivity. 382 

 383 

2.4.3. Estimation of reliability 384 
The central aspect of this manuscript concerns the reliability of resting-state functional 385 
connectivity in the human spinal cord. While different fields have come to rely on different 386 
operationalizations of reliability (for an in-depth discussion, see Brandmaier et al., 2018), we 387 
here follow the tradition in resting-state functional connectivity research and employ the intra-388 
class correlation coefficient (ICC) for assessing reliability (see also Noble et al., 2020). 389 
Considering that spinal cord fMRI is severely impacted by different noise sources, our 390 
reliability investigation was not only focused on the connectivity metrics, but also possibly 391 
contributing factors. Thus, we calculated the test-retest reliability for each of the following 392 
aspects: i) functional connectivity, ii) tSNR, iii) motion metrics (DVARS, refRMS), iv) cardiac 393 
metrics (mean heart period, heart period variability), v) respiratory metrics (mean respiratory 394 
period, respiratory period variability), and vi) explained variance of gray matter time-series. 395 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.23.521768doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.23.521768
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

For each of these metrics, we first created a 45×2 (i.e. participants×sessions) matrix and then 396 
assessed the reliability using the ‘Case 2’ intraclass correlation coefficient (ICC(2,1);  two-way 397 
random effects model; McGraw & Wong, 1996; Shrout & Fleiss, 1979); this is often also 398 
referred to as ‘absolute agreement’ (Molloy & Birn, 2014). ICC(2,1) is defined as the 399 
following: 400 

ICC(2,1) = !"#$%&$$'
!"#$%&$$'(	!"*$**+,'(!"$--,-

 401 

Where σ/0123114  corresponds to the variance among persons (between participant) and 402 
σ/5155674	corresponds to the variance between sessions. Given its formula, the ICC shows what 403 
proportion of the total variance can be attributed to between-persons differences (Brandmaier 404 
et al., 2018; Noble et al., 2019).  405 

We also aimed to provide an estimate of uncertainty, and thus calculated the 95% confidence 406 
interval (CI) of ICC values via non-parametric bootstrapping performed in MATLAB. 407 
Throughout the manuscript, ICC values are interpreted according to standard procedures: poor 408 
<0.4, fair 0.4–0.59, good 0.6–0.74, excellent ≥0.75 (Cicchetti & Sparrow, 1981; Hallgren, 409 
2012). 410 

 411 

2.5. Open science statement 412 

All the code necessary to reproduce the reported results is available on GitHub 413 
(https://github.com/eippertlab/restingstate-reliability-spinalcord). The underlying data are 414 
available in BIDS-format via OpenNeuro (https://openneuro.org/datasets/ds004386 ; note that 415 
the dataset is currently only accessible to reviewers, but will be made publicly available when 416 
the manuscript is published). The intended data-sharing via OpenNeuro was mentioned in the 417 
Informed Consent Form signed by the participants and approved by the Ethics Committee at 418 
the Medical Faculty of the University of Leipzig. 419 

  420 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.23.521768doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.23.521768
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

3. Results 421 

3.1. Replication and extension of previous resting-state functional connectivity results 422 

Our first aim was to i) replicate previous ROI-based resting-state functional connectivity fMRI 423 
findings and ii) quantify the test-retest reliability of resting-state functional connectivity at 3T 424 
in human spinal cord. To this end, we assessed connectivity between the dorsal horns, between 425 
the ventral horns and between the within-hemicord dorsal and ventral horns as well as between-426 
hemicord dorsal and ventral horns (Figure 1A). All connectivity estimations were carried out 427 
on data that were subjected to extensive correction for physiological noise (i.e. the ‘maximal’ 428 
denoising pipeline), as is typical in spinal fMRI. To control for non-specific factors, we 429 
explored tSNR differences between the different horns, but observed rather similar group-430 
averaged gray-matter tSNR (even though the tSNR of ventral horns were slightly higher (6.8%) 431 
compared to the dorsal horns), with the range of variation across participants also being similar 432 
(Figure 1B). 433 

We observed highly significant positive connectivity between the dorsal horns (r = 0.03; t = 434 
9.5; p < 0.001) as well as between the ventral horns (r = 0.05; t = 11.6; p < 0.001) and were 435 
thus able to replicate previous findings. Additionally, we observed significant negative dorsal-436 
ventral connectivity within hemicords (r = -0.02; t = -10.7; p < 0.001) and positive dorsal-437 
ventral connectivity between hemicords (r = 0.01; t = 6.7; p < 0.001), but these were weaker 438 
than the dorsal and ventral connectivity (Figure 1C). With regards to the robustness of these 439 
results at the individual level, 100% of the participants exhibited positive dorsal-dorsal and 440 
ventral-ventral connectivity, while 98% of participants exhibited negative dorsal-ventral 441 
within-hemicord connectivity and 84% of participants demonstrated positive dorsal-ventral 442 
between-hemicord connectivity. 443 

In terms of the reliability of these connectivity patterns, the ICC of dorsal-dorsal connectivity 444 
(0.59, CI: 0.46 – 0.74) and of ventral-ventral connectivity (0.63, CI: 0.44 – 0.79) was in the 445 
upper part of the fair and the lower part of the good range, respectively, whereas the reliability 446 
of within- and between-hemicord dorsal-ventral connectivity was clearly in the poor range 447 
(within-hemicord: 0.30, CI: 0.06 – 0.53 ; between-hemicord: 0.18, CI : -0.03 – 0.38; Figure 448 
1D). Both connectivity amplitude and reliability were also assessed by i) replacing Pearson 449 
correlation with partial correlation (in order to account for the effects of any possibly remaining 450 
global signal fluctuations) and ii) adding a pre-whitening step during the GLM estimation (in 451 
order to account for the temporal autocorrelation of the BOLD data), but neither of these 452 
approaches led to a relevant change in the here-reported results (see Figure S1 and Table S1, 453 
respectively). 454 

 455 
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 456 

Figure 1. Resting-state functional connectivity and its reliability. A. Functional connectivity 457 
calculation. An exemplary transverse slice taken from the T2*-weighted PAM50 template (at 458 
segmental level C6) is shown with the gray matter masks overlaid as contours. The coloured arrows 459 
indicate the four different types of ROI-to-ROI connectivity that we investigated: dorsal-dorsal in green, 460 
ventral-ventral in orange, within-hemicord dorsal-ventral in blue, and between-hemicord dorsal-ventral 461 
in pink. B. Gray matter tSNR. Bar graphs show the tSNR for each of the gray matter ROIs. The vertical 462 
lines on the bars depict the standard error of the mean and the circles indicate participant-specific values. 463 
C. Resting-state functional connectivity of the cervical cord. Pearson correlation values (averaged 464 
across two sessions) between the time-courses of different ROIs are shown with box plots. For the box 465 
plots, the median is denoted by the black central line and the mean is denoted by the colored central 466 
line. The boxes represent the interquartile range and the whiskers encompass ~99% of the data. 467 
Correlation values from individual participants are shown with circles. D. Test-retest reliability of 468 
resting-state connectivity. ICC values for each connection are indicated via the circles, with the 469 
vertical lines representing the 95% confidence intervals. The gray scale background reflects the ICC 470 
ranges (as defined by Cicchetti & Sparrow (1981) and (Hallgren, 2012)): poor <0.4, fair 0.4–0.59, good 471 
0.6–0.74, excellent ≥0.75. 472 

 473 

3.2. Impact of noise sources on resting-state functional connectivity and its reliability 474 

Considering that spinal cord fMRI is severely signal-to-noise limited due to the impact of 475 
various noise sources, we next investigated the relevance of each of these noise sources for the 476 
estimation of functional connectivity and its reliability. While the above-reported results were 477 
obtained after typical physiological noise correction procedures, we now separately assess 478 
physiological noise sources as well as thermal noise, which has hitherto been neglected in 479 
spinal cord fMRI. The effects of each noise source were evaluated by assessing the change in 480 
connectivity amplitude and reliability after it was removed. 481 

 482 

3.2.1. Physiological noise and amplitude of functional connectivity 483 

There are several general observations regarding the effects of physiological noise sources on 484 
functional connectivity (Figure 2; Tables 1 & 2). First, no matter which noise source was 485 
corrected for, the sign of the correlation stayed the same for all four connections and all four 486 
connections remained significant, indicating their robustness. Second, the (relatively weaker) 487 
within-hemicord and between-hemicord connectivity strength was not systematically impacted 488 
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by physiological noise correction. Third, and most importantly, dorsal-dorsal and ventral-489 
ventral connections showed a consistent reduction in connectivity strength with increasingly 490 
stringent denoising. This latter point was also evident statistically, where a significant reduction 491 
in connectivity strength was observed for all noise sources, which became even more 492 
pronounced when combining the different noise regressors into combined sets (e.g. PNM 493 
pipeline and maximal pipeline; see Table 1). Interestingly, despite the strong reduction in 494 
correlation amplitude for dorsal-dorsal and ventral-ventral connections (of at least 50%) from 495 
the baseline to the maximal pipeline, the results remained clearly significant in the latter, which 496 
was likely due to the reduction in the inter-individual spread of amplitudes (i.e. higher 497 
precision). Supporting this overall pattern, highly similar results were obtained when Pearson 498 
correlation was replaced by partial correlation (Figure S1). 499 

 500 

 501 

Figure 2. Effects of physiological noise. The top panel depicts Pearson correlation values (averaged 502 
within a participant across the two runs) between the time-courses of different ROIs via box plots for 503 
the seven denoising pipelines (Base: baseline processing; +Moco: baseline + slice-specific motion-504 
correction estimates; +CSF: baseline + CSF signal; +Respiratory: baseline + eight respiratory 505 
regressors; +cardiac: baseline + eight cardiac regressors; +PNM: baseline + thirty-two PNM regressors; 506 
Max: baseline processing, slice-specific motion correction estimates, 32 PNM regressors and a CSF 507 
regressor). For the box plots, the median and mean are denoted by black and colored central lines, 508 
respectively. The boxes represent the interquartile range, with the whiskers encompassing ~99% of the 509 
data (outliers are denoted with red dots) and the circles representing individual participants. The bottom 510 
panel depicts ICC values for each the different pipelines via the circles, with the vertical lines 511 
representing the 95% confidence intervals. The gray scale background reflects the ICC ranges (as 512 
defined by Cicchetti & Sparrow (1981) and Hallgren (2012)): poor <0.4, fair 0.4–0.59, good 0.6–0.74, 513 
excellent ≥0.75. 514 

 515 

3.2.2.  Physiological noise and reliability of functional connectivity 516 
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Similar to the strength of functional connectivity, reliability also decreased with more stringent 517 
denoising (Figure 2; Table 1), though now for all four connections: the reliability of dorsal-518 
dorsal connectivity decreased from good to fair (by 17.5%), the reliability of ventral-ventral 519 
functional connectivity stayed in the good range with a slight decline (by 3.19%), and the ICC 520 
values for within- and between-hemicord connectivity were consistently in the poor range, 521 
though with a clear decline of reliability being noticeable (22.5% and 36.7%, respectively). 522 
When looking at the influence of single noise sources, it becomes apparent that the strongest 523 
drop in reliability is observed due to removal of respiratory noise for dorsal-dorsal connectivity, 524 
whereas the removal of cardiac noise leads to the strongest decline of reliability in ventral-525 
ventral connectivity. 526 

The observed decrease in reliability may seem counter-intuitive at first glance, as the removal 527 
of physiological noise could be expected to increase reliability. However, such a pattern could 528 
arise if i) the noise is spatially structured (which is known to be the case for physiological 529 
noise) and ii) the processes that generate noise present with high reliability, which we set out 530 
to probe here. We noticed that metrics of motion (DVARS and refRMS), cardiac activity (mean 531 
heart period and heart period variability) and respiratory activity (mean respiratory period and 532 
respiratory period variability) not only strongly covaried across runs (Fig. 3A right panel), but 533 
also consistently exhibited excellent reliability, with ICCs between 0.75 and 0.94 (Fig. 3A left 534 
panel). Whether such a reliable noise-generating process also translates into a reliable influence 535 
on the measure of interest (i.e. gray matter time-series data) was investigated next. 536 

Therefore, we assessed the effects of noise sources on tSNR (an often-used metric of fMRI 537 
time-series) and explained variance. With respect to gray matter tSNR changes (Figure 3B), 538 
the addition of the noise regressors led to the following increases: motion regressors 1.4%, CSF 539 
regressor 1.5%, respiratory regressors 2.9%, cardiac regressors 4.7%, PNM regressors 11.9%, 540 
and the combination of all regressors 13.4% (compared to the tSNR after the baseline pipeline), 541 
with all of increases significant at p < 0.001. Looking at this from the perspective of the fraction 542 
of gray-matter time-series variance explained by each of the noise regressors, we observed the 543 
following (Figure 3C right panel): motion regressors and the CSF regressor both 2.9%, 544 
respiratory and cardiac regressors 5.7% and 8.6%, PNM regressors 20.1% and combining all 545 
regressors 22.0%. Most importantly though, the variance explained by each of the noise 546 
components was highly reliable between runs (Figure 3C left panel): ICC values were mostly 547 
in the excellent range, varying between 0.73 to 0.89. Such a pattern of results is consistent with 548 
the above-mentioned reduction in amplitude and reliability of functional connectivity after 549 
denoising and provides evidence for the presence of structured and reliable non-neural signals 550 
being present in the gray-matter time-series. 551 
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 552 

Figure 3. Reliability of physiological measurements and effects on tSNR and explained variance 553 
in the gray matter. A. Scatter plots show the metrics derived from physiological measurements 554 
recorded in each session, plotted against each other for every participant. On the very right, associated 555 
ICC values are depicted with the dots (lines depict 95% confidence intervals). B. Bar graphs show the 556 
gray matter tSNR after various physiological noise correction techniques have been applied. C. On the 557 
left, the bar graphs show the gray matter time-series variance accounted for by various physiological 558 
noise correction techniques. In all bar plots, the vertical lines on the bars depict the standard error of 559 
the mean and the circles indicate participant-specific values. On the right, ICC values for explained 560 
variance are shown with the filled circles and the lines depicting 95% confidence intervals. The gray 561 
scale background reflects the ICC ranges (as defined by Cicchetti & Sparrow (1981) and Hallgren 562 
(2012)): poor <0.4, fair 0.4–0.59, good 0.6–0.74, excellent ≥0.75. 563 

 564 

3.2.3. Thermal noise 565 

After having assessed the impact of physiological noise, we now turn our focus to the influence 566 
of thermal noise. We aimed to remove thermal noise either via MP-PCA or via spatial 567 
smoothing – both of these approaches were added to the maximal denoising pipeline for 568 
physiological noise (more specifically, they occurred before GLM-based physiological 569 
denoising), which now also served as the baseline to compare against. 570 
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Since thermal-noise removal has to our knowledge not been addressed in the spinal fMRI 571 
literature yet, we first assessed its impact on tSNR and observed a highly significant (all p < 572 
0.001) increase in gray-matter tSNR after adding either MP-PCA (140.2%) or spatial 573 
smoothing with a 2mm (120.2%, p < 0.001) or 4mm kernel (260.4%, p < 0.001). This increase 574 
in tSNR was thus similar to what was observed when adding physiological noise correction 575 
regressors, though now of much stronger amplitude. In sharp contrast to physiological noise 576 
correction however, both MP-PCA and spatial smoothing led to an increase in functional 577 
connectivity amplitudes (Table 3 and Figure 4): dorsal-dorsal, ventral-ventral and between-578 
hemicord dorsal-ventral connectivity all had significantly higher amplitudes when compared 579 
to the maximal denoising pipeline; the absolute strength of within-hemicord dorsal-ventral 580 
connectivity also increased, though with a sign-change, which turned from negative to positive 581 
after MP-PCA and smoothing. For all connections, the reliability of functional connectivity 582 
increased when spatial smoothing was added to maximal denoising pipeline, whereas a more 583 
mixed picture appeared for MP-PCA (with either a slight decrease [dorsal-dorsal and ventral-584 
ventral], increase [between-hemicord] or no change [within-hemicord]; Tables 3 and Figure 4). 585 

One aspect of these results deserves further interrogation, namely whether the increased 586 
connectivity amplitudes might simply come about via time-course mixing between the ROIs 587 
due to an increased spatial smoothness of the data after the thermal-noise correction 588 
procedures. We therefore assessed the spatial autocorrelation function of the EPI data and 589 
observed that – across the group – the effective smoothness increased from 1.3±0.66 by 142% 590 
for 2mm (3.2±0.15) and 317% for 4mm (5.5±0.28) smoothing. Importantly, despite the more 591 
than two-fold increase in tSNR and connectivity amplitudes observed after MP-PCA, this 592 
procedure only led to a 34% increase in spatial smoothness (1.8±0.12). It is thus unlikely that 593 
the increased connectivity observed after MP-PCA is driven via time-course mixing between 594 
the different ROI – an assumption underscored even further by the fact the MP-PCA increased 595 
the connectivity of all connections in a way that is unrelated to the ROIs spatial distance (Figure 596 
S2). Conversely, the effects of spatial smoothing on connectivity amplitudes are likely driven 597 
by time-course mixing, since i) the largest increase e.g. for 2mm smoothing was observed for 598 
the ROIs being closest together (dorsal-ventral within-hemicord connection; Figure S2) and ii) 599 
the increase in connectivity parallels the increase in spatial smoothness (cf. Figure 4B and 4C). 600 
This suggests that even modest smoothing kernels such as 2mm should only be employed with 601 
great caution in the spinal cord. 602 
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 603 

Figure 4. Impact of thermal noise removal. A. Impact of thermal noise removal on tSNR. Bar 604 
graph shows the tSNR in the gray matter for each segment after employing different processing 605 
pipelines (Max: maximal processing – which served as baseline for this comparison, +MP-PCA: 606 
maximal + thermal noise removal via MP-PCA; +Smooth2: maximal + smoothing with a 2mm kernel; 607 
+Smooth4: maximal + smoothing with a 4mm kernel). The vertical lines on the bars depict the standard 608 
error of the mean and the filled dots lines indicate participant-specific values. B. Impact of thermal 609 
noise removal on spatial smoothness. On the left side, one exemplary EPI slice of a participant in 610 
native space (where analyses were carried out) and gray matter ROIs overlaid in green are shown after 611 
different processing steps. Scale bars represent 2mm and 4mm, respectively. On the right side, effective 612 
spatial smoothness values estimated using AFNI’s 3dFWHMx function are depicted via box-plots for 613 
which the median is denoted by the central mark and the bottom and top edges of the boxes represent 614 
the 25th and 75th percentiles, respectively, with the whiskers encompassing ~99% of the data and 615 
outliers being represented by red dots. The circles represent individual participants. C. Impact of 616 
thermal noise removal on functional connectivity and reliability. The top panel depicts Pearson 617 
correlation values (averaged across two sessions) between the time-courses of different ROIs with the 618 
box plots for four different pipelines (box plots are identical to those in B – except here the mean is 619 
denoted by the colored central mark). On the bottom panel, ICC values for each connection (and each 620 
pipeline) are shown with the filled circles and the lines show 95% confidence intervals. The gray scale 621 
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background reflects the ICC ranges (as defined by Cicchetti & Sparrow (1981) and Hallgren (2012)): 622 
poor <0.4, fair 0.4–0.59, good 0.6–0.74, excellent ≥0.75. 623 

3.3. Within-segment functional connectivity 624 

Finally, we aimed to assess whether resting-state functional connectivity could also be reliably 625 
observed at the level of single spinal segments (C3, C4, C5, C6, C7, C8 and T1; Figure 5A). 626 
For these analyses we used data that were denoised with MP-PCA in addition to the maximal 627 
physiological noise correction pipeline, as the above analyses showed this method to be 628 
beneficial for both tSNR and connectivity estimates. 629 

First of all, we observed that – despite the use of z-shimming – the gray-matter tSNR was lower 630 
for the lowermost segments (C7, C8 and T1). Functional connectivity, however, was highly 631 
significant in every segment for all connections (dorsal-dorsal, ventral-ventral, within-632 
hemicord, between-hemicord; see Figure 5 and Table 4). Reliability of functional connectivity 633 
at the single-segment level, on the other hand, was mostly poor (see Figure 5 and Table 4). For 634 
dorsal-dorsal connectivity, the reliability values were largely in the poor range except at level 635 
C6 (in the fair range), and for ventral-ventral connectivity, the ICC values fluctuated between 636 
the poor and fair range (poor for C3, C6 and C8; fair for C4, C5, C7 and T1). Within- and 637 
between-hemicord dorsal-ventral reliability values were in the poor range for every single 638 
segment. These results highlight that even though it is possible to detect single-segment 639 
connectivity patterns, these are highly variable across scan-sessions and thus lack robustness 640 
with the currently employed approaches for data acquisition and analysis. 641 
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 642 

Figure 5. Segment-specific functional connectivity. A. The midsagittal cross-section on the left (from 643 
the T2-weighted PAM50 template image) shows the thresholded probabilistic segments overlaid as 644 
outlines. Segment-wise tSNR values are depicted via box-plots for which the median is denoted by the 645 
central mark and the bottom and top edges of the boxes represent the 25th and 75th percentiles, 646 
respectively, with the whiskers encompassing ~99% of the data and outliers being represented by red 647 
dots. The circles represent individual participants and half-violin plots show the distribution across 648 
participants. B. The top panel depicts Pearson correlation values (averaged across two sessions) 649 
between different ROIs with one box plot per segmental level. For the box plots, the median and mean 650 
are denoted by the central black mark and the colored mark, respectively. The bottom and top edges of 651 
the boxes represent the 25th and 75th percentiles, respectively, with the whiskers encompassing ~99% 652 
of the data, and the outliers are denoted with the red dots. The circles represent individual participants. 653 
The bottom panel depicts ICC values for each connection with the dot and the lines denote 95% 654 
confidence intervals. The gray scale background reflects the ICC ranges (as defined by Cicchetti & 655 
Sparrow (1981) and Hallgren (2012)): poor <0.4, fair 0.4–0.59, good 0.6–0.74, excellent ≥0.75. 656 

  657 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.23.521768doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.23.521768
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

4. Discussion 658 

In the last decade, evidence has accumulated that the human spinal cord exhibits spatially 659 
distinct patterns of spontaneous activity at rest, as functional connectivity was observed to exist 660 
between the two dorsal horns and between the two ventral horns, mirroring the functional 661 
division of the gray matter into sensory and motor parts, respectively. While this has generated 662 
interest in the use of such connectivity metrics in the clinical context as possible biomarkers 663 
for sensory and motor disorders (such as chronic pain and multiple sclerosis), a first essential 664 
step is to quantify their reliability, which we set out to do here at the clinically relevant field 665 
strength of 3T. We first replicated and extended previous resting-state fMRI findings by 666 
investigating the spinal cord’s functional connectivity and assessing its test-retest reliability in 667 
a large sample (N > 40). Considering that spinal cord BOLD signals are strongly affected by 668 
noise, we characterized the impact of various noise sources (i.e., physiological noise and 669 
thermal noise) on connectivity strength and reliability. Finally, we considered local aspects of 670 
functional connectivity and their reliability by investigating this at a macro-scale unit of spinal 671 
cord organization, namely at the level of single spinal segments. 672 

 673 

4.1. Replication and extension of previous resting-state functional connectivity results 674 

In order to replicate previously observed functional connectivity results, we used a commonly 675 
employed processing pipeline for removal of physiological noise (i.e. addressing noise arising 676 
from participant motion, cardiac, respiratory and CSF effects). With an ROI-based approach, 677 
we demonstrated statistically significant functional connectivity between the dorsal horns 678 
(housing somatosensory function) and between the ventral horns (housing somatomotor 679 
function), thus replicating a pattern of results observed in previous spinal cord fMRI studies in 680 
rats (Wu et al., 2018), monkeys (Chen et al., 2015;  Wu et al., 2019) and humans (3T: Barry et 681 
al., 2018; Eippert et al., 2017b; Hu et al., 2018; Liu et al., 2016; Weber et al., 2018 ; 7T: Barry 682 
et al., 2014, 2016; Conrad et al., 2018). The fact that such a functional connectivity profile is 683 
observed across different acquisition protocols, field strengths as well as species provides 684 
further support for the hypothesis that intrinsic fluctuations of the spinal cord are not of random 685 
nature. It does however neither confirm the neuronal origin of resting-state functional 686 
connectivity  nor provide answers regarding the exact neurobiological underpinnings (Eippert 687 
& Tracey, 2014) and towards this end, combining fMRI with electrophysiological recordings 688 
(Brookes et al., 2011; Schölvinck et al., 2010) would be beneficial, with important first steps 689 
in this direction already being taken (Wu et al., 2019). 690 

We also observed significant functional connectivity within (left dorsal-ventral and right 691 
dorsal-ventral) and between (left dorsal - right ventral and right dorsal - left ventral) hemicords, 692 
though these were clearly weaker in terms of correlation magnitude than the dorsal-dorsal and 693 
ventral-ventral connections (and were actually negative for within-hemicord connectivity). 694 
This weaker result observed here fits well into the literature, with some studies observing 695 
similar sensory-motor cord connectivity  (Chen et al., 2015; Weber et al., 2018; Wu et al., 696 
2019), and others not (Barry et al., 2014; Eippert et al., 2017a; see Harrison et al., 2021 for a 697 
review). Of note in this case are recent electrophysiological data providing evidence for such 698 
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dorsal-ventral connectivity at the level of local field potentials and spike trains in anaesthetized 699 
animals (McPherson & Bandres, 2021; Wu et al., 2019). While the reason for this variability 700 
of functional connectivity findings across experimental models and measurement-levels is 701 
currently unclear, existence for structural dorsal-ventral connectivity is unequivocal, as it is 702 
the anatomical substrate for polysynaptic spinal reflexes in humans (Pierrot-Deseilligny & 703 
Burke, 2012; Sandrini et al., 2005) and has also been delineated in detail with modern tracing 704 
approaches in mice (e.g. Ronzano et al., 2021; Stepien et al., 2010). Interestingly, in the context 705 
of fMRI, the likelihood to observe dorsal-ventral resting-state connectivity might also depend 706 
on data processing choices, as this type of result is not robust against variations in the 707 
processing pipeline (Eippert et al., 2017a; similar to what we observed here after removal of 708 
thermal noise). 709 

One further way to judge the robustness of results is via their reliability, which we assessed 710 
here via test-retest reliability (Shrout & Fleiss, 1979). Using ICC as a measure of reliability, 711 
we observed fair-to-good reliability for dorsal-dorsal and ventral-ventral connectivity and poor 712 
reliability for within hemicord and between hemicord connectivity (the robustness of this 713 
finding received further support from analyses in which we employed partial correlation 714 
instead of Pearson correlation and observed highly similar results). This is in line with a 715 
previous investigation by Barry and colleagues (2016) at the ultra-high field strength of 7T and 716 
demonstrates that a similar level of reliability can be obtained at the clinically-relevant field 717 
strength of 3T. Previous important investigations into the test-retest reliability of functional 718 
connectivity at 3T were limited in terms of the employed sample size (N=10 for Liu et al. 719 
(2016), Hu et al. (2018), Barry et al. (2018)), which we overcame here using a more than 4-720 
fold larger sample size. Other studies have assessed the split-half reliability of ICA-derived 721 
spinal cord resting-state networks in humans at 3T (Kong et al., 2014) and the test-retest 722 
reliability of ROI-based functional connectivity in rats at 9.4T (Wu et al., 2018) and generally 723 
observed fair to good reliability as well. It is important to point out that despite these differences 724 
in data acquisition and analyses – which have been demonstrated to substantially influence 725 
reliability estimates of resting-state connectivity in the brain (for review, see Noble et al. 726 
(2019)) – all of these findings seem to point towards reproducible results, i.e. show the presence 727 
of reliable spinal cord resting-state networks. 728 

 729 

4.2. Impact of noise sources on resting-state functional connectivity and its reliability 730 

Considering that noise has an immense impact on the spinal cord fMRI signal – i.e. its influence 731 
is much more prominent than in the brain (Piche et al., 2009; Cohen-Adad et al., 2010) – we 732 
next assessed to what degree functional connectivity and its reliability are affected by various 733 
noise sources and procedures for their correction. 734 

We first investigated the impact of physiological noise regression on functional connectivity 735 
and observed that, in general, extensive denoising (i.e. the addition of various physiological 736 
noise regressors to the baseline) led to a clear decrease in the amplitude of functional 737 
connectivity estimates and also decreased the reliability of functional connectivity, while – not 738 
surprisingly – tSNR was increased. This reduction in amplitude and reliability may seem 739 
counterintuitive at first glance, as one might expect that removal of physiological noise should 740 
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improve the detectability and reliability of functional connectivity. However, this result is 741 
indeed consistent with observations in many resting-state fMRI studies in the brain (Birn et al., 742 
2014; Guo et al., 2012; Noble et al., 2019; Parkes et al., 2018; Shirer et al., 2015; Zou et al., 743 
2015), where a decrease in reliability was observed after various denoising approaches. 744 

Further investigations undertaken to elucidate why reliability decreased after physiological 745 
noise removal revealed that the sources of physiological noise – e.g. mean and standard 746 
deviation of heart period and breathing period – were highly reliable, i.e. showed stable 747 
responses within participants across runs, but large variation across participants (in this sense, 748 
we are removing ‘true’ biological variability here, though of a confounding nature). The same 749 
held for the amount gray matter timeseries variance explained by physiological noise 750 
regressors: these mostly exhibited reliability in the excellent range, in line with observations in 751 
previous studies that also looked at the reproducibility of respiratory and cardiac effects in 752 
spinal cord MRI data (Piché et al., 2009; Verma & Cohen-Adad, 2014). If one now considers 753 
that our reliability metric of choice – the ICC – can be roughly defined as a ratio of the variance 754 
of interest (in our case: between-participant) to the total variance (Liljequist et al., 2019), a 755 
possible path via which physiological noise removal decreases reliability becomes apparent: it 756 
removes spatiotemporally structured ‘reliable artefacts’ (i.e. differing strongly between 757 
participants, but not necessarily between runs within participants), that would otherwise 758 
contribute to the reliability estimation via their confounding effects on connectivity. A similar 759 
argument has already been made for the reliability of resting-state connectivity in the brain, 760 
substantiated by a detailed investigation of the changes in the different variance components 761 
contributing to the ICC (Birn et al., 2014). In other words: once the impact of these reliable 762 
non-neural sources that influence ROI time-courses similarly – and thus also increase the 763 
correlation strength – within each participant is removed, correlation amplitude as well as 764 
reliability decreases.  765 

Thus, and as already pointed out by others (Birn et al., 2014; Shirer et al., 2015; Noble et al., 766 
2019), the reduction in reliability after physiological noise removal might actually increase the 767 
validity of the results. Validity can be defined as how close or accurate one is measuring what 768 
one intends to measure (Carmines & Zeller, 1979) and in our case – using resting-state fMRI 769 
– we intend to measure neuronally driven BOLD fluctuations, which only represent a small 770 
percentage of the variance in the noisy fMRI signal (Bijsterbosch & Beckmann, 2017; Birn, 771 
2012). One might anticipate that an improved validity after removal of physiological noise may 772 
also lead to a better distinction at the group level – e.g. between patients’ and healthy controls’ 773 
functional connectivity patterns – or improve the relationship between functional connectivity 774 
estimates and ‘trait’ characteristics (Shirer et al., 2015; Noble et al., 2017a; Noble et al., 2019); 775 
interventional studies could also shed light on this.  776 

In addition to the effects of removing physiological noise, we also assessed the impact of 777 
thermal noise (Edelstein et al., 1986; Hoult & Richards, 1976; Krüger & Glover, 2001) and 778 
methods for its correction. While we did not formally assess the physiological noise to thermal 779 
noise ratio in our data – as this depends on many factors (Brooks et al., 2013; Triantafyllou et 780 
al., 2005, 2011) and is complicated by the fact that part of what is traditionally considered 781 
physiological ‘noise’ is our signal of interest here – we observed marked effects of thermal 782 
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noise removal: the application of MP-PCA (Veraart et al., 2016a; Veraart et al., 2016b) led to 783 
i) a substantial increase in tSNR (more than two-fold), ii) a concurrent and consistent increase 784 
in correlation strength (more than three-fold) and iii) no consistent changes in reliability (as we 785 
observed either decreases, no change or an increase in reliability, possibly warranting future 786 
investigations). One immediately notices the clear difference to physiological noise removal, 787 
which also increased the tSNR, but decreased connectivity strength and reliability, likely due 788 
to physiological noise being structured and reliable. Despite being a major source of noise in 789 
fMRI acquisitions, only a few brain fMRI studies (Ades-Aron et al., 2021a; Adhikari et al., 790 
2019) utilized thermal noise removal via MP-PCA and to our knowledge its benefits for spinal 791 
cord fMRI had not yet been demonstrated (see Grussu et al., 2020 for an application of MP-792 
PCA in quantitative MRI of the cord and Vizioli et al., 2021 for an even more recent thermal 793 
noise correction technique applied to brain fMRI data). We furthermore compared MP-PCA to 794 
spatial smoothing which also serves to suppress thermal noise: compared to spatial smoothing 795 
(which also enhanced tSNR and connectivity strength), MP-PCA achieved this without 796 
incurring a substantial penalty in terms of increased spatial smoothness. This is an important 797 
consideration, since ROIs in the spinal cord lie so close to each other that even with a modest 798 
Gaussian smoothing kernel of 2mm FWHM, artificial connectivity (via time-course mixing) 799 
can be induced, which we were able to demonstrate here, since the increase in connectivity 800 
strength induced via smoothing depended on the spatial proximity of the ROIs. We thus believe 801 
that thermal noise removal via MP-PCA might be an attractive option for enhancing the 802 
sensitivity of spinal cord fMRI, but would like to note that its detailed validation in the context 803 
of resting-state fMRI is still outstanding (as are comparisons with other methods, e.g. Vizioli 804 
et al., 2021). 805 

 806 

4.3. Within segment functional connectivity 807 

Finally, we assessed the amplitude and reliability of more localized aspects of connectivity, i.e. 808 
within a spinal cord segment, which is traditionally considered to be the basic organizational 809 
unit of the spinal cord along the rostrocaudal axis (though see Watson & Sidhu, 2009; Sengul 810 
et al., 2013). This was made possible by the availability of probabilistic maps for spinal cord 811 
segments (Cadotte et al., 2015) and their integration into a common template space (De Leener 812 
et al., 2017). Reassuringly, for all of the segmental levels that we investigated (C3-T1), we 813 
were able to demonstrate robust functional connectivity patterns, i.e. significantly positive 814 
correlations between bilateral dorsal and between bilateral ventral horns, despite an apparent 815 
decrease in tSNR for segments C7-T1 compared to the more rostral cervical segments. While 816 
minor variations in connectivity strength were observed, the overall pattern stayed consistent 817 
across segments and mirrored the above-reported connectivity results that spanned the 818 
superior-inferior axis of the imaging volume (similar to Eippert et al. (2017a)). We also 819 
observed significant within and between hemicord dorsal-ventral connectivity at each segment 820 
(except C5 where between hemicord connectivity was not significant), though this was again 821 
much weaker than dorsal-dorsal and ventral-ventral connectivity. Importantly though, the 822 
reliability of functional connectivity at the level of individual segments was consistently in the 823 
poor range: this held entirely for dorsal-ventral connectivity, mostly for dorsal-dorsal 824 
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connectivity (apart from segment C6) and partially for ventral-ventral connectivity (where 825 
approximately half of the ICCs were in the fair range); in addition, this was consistently evident 826 
across segments and thus not driven by the lower tSNR present in the more caudal segments. 827 
Given our 5mm slice thickness, there were only approximately three EPI slices in each 828 
segment, probably rendering correlation estimates susceptible to remaining noise across voxels 829 
(e.g. compared to the analyses across the imaging volume) and recent investigations have 830 
suggested that other 3T acquisition approaches might be helpful in this regard (Kinany et al., 831 
2022), as could be the use of higher field strength (Barry et al., 2018) or using slightly dilated 832 
regions of interest. Considering that many disorders present with localized spinal cord 833 
pathology (e.g. cervical myelopathy; Nouri et al., 2015) and that spinal cord resting-state fMRI 834 
is now being applied in such contexts – e.g. spinal cord injury (Chen et al., 2015; Sengupta et 835 
al., 2021)  or multiple sclerosis (Conrad et al., 2018; Combes et al., 2022) – it will be of utmost 836 
importance to improve the reliability of segment-wise connectivity via optimization of data 837 
acquisition and analysis approaches, since only with a reliable estimate of connectivity can 838 
longitudinal studies that monitor disease progression or treatment effects be carried out 839 
successfully. 840 

 841 

4.4. Limitations and outlook 842 

There are several limitations of the current study that are worth mentioning. First of all, in 843 
terms of assessing functional connectivity, we have only used ROI-based static functional 844 
connectivity approaches here, whereas data-driven approaches like ICA (Kong et al., 2014) or 845 
time-varying functional connectivity approaches (Kinany et al., 2020) might yield different 846 
insights into the reliability of spinal cord networks; of note, these could be applied on our 847 
openly-available data-set, allowing for a direct comparison between methods. Second, we 848 
assessed the impact of physiological noise solely within the PNM framework (Brooks et al., 849 
2008; Kong et al., 2012). Although PNM is well established for spinal cord fMRI and has 850 
compared favorably against other methods in this context (Kong et al., 2012), there are many 851 
other approaches to address physiological noise that we did not consider here and that again 852 
might perform differently, such as CompCor (Behzadi et al., 2007), DRIFTER (Särkkä et al., 853 
2012) or ICA-AROMA (Pruim et al., 2015). A comparison of various denoising approaches 854 
was beyond the scope of current work (similar to evaluating the effects of different 855 
preprocessing steps), but could also be carried out on this openly-available data-set and might 856 
offer additional insights, as there might be unmodeled noise components still present in the 857 
data. Third, considering the various different approaches for data acquisition that are currently 858 
employed in spinal cord fMRI at 3T (e.g. Barry et al., 2021; Kinany et al., 2022), we refrain 859 
from extrapolating our results beyond the specific acquisition scheme employed here. Fourth, 860 
one needs to be careful regarding the interpretation of the observed reliability, since on the one 861 
hand, our results may represent an ‘upper’ end of reliability estimates, as we assessed the test-862 
retest reliability of functional runs which were separated by at most ~10 minutes. On the other 863 
hand, the two functional runs had slightly different z-shim settings which might bias towards 864 
‚lower’ reliability (although there were no significant tSNR differences between the two 865 
acquisitions) . Given these factors, it would be interesting to assess the reliability of resting-866 
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state spinal networks over different time spans in the future, ranging from hours to days to 867 
months, as reliability may decrease over time (Shehzad et al., 2009) – here one could also 868 
envision to assess runs that were acquired in different scanners (Noble, et al., 2017b) in order 869 
probe different components of reliability (Brandmaier et al., 2018). Finally, it is important to 870 
keep in mind that the ICC is calculated as a ratio of between person variance to total variance 871 
and ICC values are thus dependent on the characteristics of given sample. For instance,  ICC 872 
values for patient groups (such as multiple sclerosis or chronic pain) might be higher due to the 873 
larger variability between individual patients as compared to our very homogenous sample 874 
consisting of young healthy adults in a very restricted age-range (see also Wenger et al., 2022). 875 
Consideration of these aspects might be helpful for understanding the limitations and benefits 876 
of spinal cord resting-state fMRI in the clinical context where longitudinal as well as multi-site 877 
and multi-cohort studies are common. 878 

 879 

5. Conclusion 880 

Taken together, this study adds to a growing body of evidence that the spinal cord exhibits 881 
structured resting-state functional connectivity. Connectivity within sensory and within motor 882 
regions of the spinal cord seems to be of robust nature, as it presents with fair reliability. Our 883 
results furthermore underscore the critical need for addressing physiological noise, though now 884 
from the perspective of reliability and also demonstrate that thermal noise removal can have 885 
beneficial effects on the detection of functional connectivity. Finally, our assessments of 886 
segment-level connectivity (presenting with low reliability) provide a more cautionary note 887 
and suggest that further improvements in data acquisition and analysis would be important 888 
before employing resting-state spinal cord fMRI longitudinally in the context of assessing 889 
disease progression or treatment response.  890 
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Table 1. Functional connectivity and reliability after physiological noise correction. 891 

 
Dorsal 
Dorsal 

Ventral 
Ventral 

Within  
Hemicord 

Between  
Hemicord 

Baseline 

r = 0.07 

t = 12.9 

p < 0.001 

ICC (95% CI) = 
0.71 (0.53 - 0.85) 

r = 0.10 

t = 18.7 

p < 0.001 

ICC (95% CI) = 
0.65 (0.49 – 0.81) 

r = -0.01 

t = -4.7 

p < 0.001 

ICC (95% CI) = 
0.38 (0.22 – 0.54) 

r = 0.02 

t = 7.1 

p < 0.001 

ICC (95% CI) = 
0.28 (0.11 – 0.47) 

Baseline + 
Motion 
parameters 

r = 0.06 

t = 12.4 

p < 0.001 

ICC (95% CI) = 
0.68 (0.52 0.82) 

r = 0.09 

t = 17.4 

p < 0.001 

ICC (95% CI) = 
0.69 (0.54 – 0.84) 

r = -0.02 

t = -4.7 

p < 0.001 

ICC (95% CI) = 
0.36 (0.19 – 0.51) 

r = 0.01 

t = 7.7 

p < 0.001 

ICC (95% CI) = 
0.23 (0.02 – 0.44) 

Baseline + CSF 

r = 0.06 

t = 12.9 

p < 0.001 

ICC (95% CI) = 
0.69 (0.52 – 0.84) 

r = 0.09 

t = 16.9 

p < 0.001 

ICC (95% CI) = 
0.67 (0.46 – 0.82) 

r = -0.01 

t = -7.7 

p < 0.001 

ICC (95% CI) = 
0.39 (0.23 – 0.54) 

r = 0.02 

t = 6.0 

p < 0.001 

ICC (95% CI) = 
0.32 (0.16 – 0.48) 

Baseline + 
Respiratory 

r = 0.06 

t = 12.8 

p < 0.001 

ICC (95% CI) = 
0.65 (0.44 – 0.81) 

r = 0.09 

t = 16.6 

p < 0.001 

ICC (95% CI) = 
0.68 (0.52 – 0.83) 

r = -0.02 

t = -8.1 

p < 0.001 

ICC (95% CI) = 
0.37 (0.18 – 0.54) 

r = 0.01 

t = 5.7 

p < 0.001 

ICC (95% CI) = 
0.29 (0.09 – 0.47) 

Baseline + 
Cardiac 

r = 0.05 

t = 10.8 

p < 0.001 

ICC (95% CI) = 
0.66 (0.45 – 0.84) 

r = 0.08 

t = 15.0 

p < 0.001 

ICC (95% CI) = 
0.63 (0.44 – 0.78) 

r = -0.01 

t = -5.5 

p < 0.001 

ICC (95% CI) = 
0.35 (0.12 – 0.55) 

r = 0.02 

t = 8.4 

p < 0.001 

ICC (95% CI) = 
0.29 (0.10 – 0.47) 

Baseline + 
PNM 

r = 0.04 

t = 9.8 

p < 0.001 

ICC (95% CI) = 
0.64 (0.48 – 0.79) 

r = 0.06 

t = 12.4 

p < 0.001 

ICC (95% CI) = 
0.62 (0.41 – 0. 79) 

r = -0.02 

t = -9.4 

p < 0.001 

ICC (95% CI) = 
0.31 (0.06 – 0.56) 

r = 0.01 

t = 6.7 

p < 0.001 

ICC (95% CI) = 
0.25 (0.02 – 0.44) 

Maximal 

r = 0.03 

t = 9.5 

p < 0.001 

ICC (95% CI) = 
0.59 (0.46 – 0.74) 

r = 0.05 

t = 11.6 

p < 0.001 

ICC (95% CI) = 
0.63 (0.44 – 0.79) 

r = -0.02 

t = -10.7 

p < 0.001 

ICC (95% CI) = 
0.30 (0.06 – 0.53) 

r = 0.01 

t = 6.7 

p < 0.001 

ICC (95% CI) = 
0.18 (-0.03 – 0.38) 
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This table depicts functional connectivity and reliability results of each connection across seven denoising pipelines. r represents the 892 
mean Pearson correlation across participants, and t and p represent the t-value and two-tailed FWE-corrected (for seven tests) p-value 893 
from a permutation test (against 0), respectively. ICC(95% CI) represents ICC(2,1) values and 95% bootstrapped confidence intervals. 894 
  895 
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Table 2. Comparison of functional connectivity strength for different denoising pipelines. 896 

This table depicts statistical comparisons of the functional connectivity strength (for each of the four connections) for six different 897 
denoising pipelines against the baseline pipeline. t and p represent the t-value and two-tailed FWE-corrected (for six tests) p-value 898 
from a permutation test against 0 (as values for each connection were subtracted from the baseline functional connectivity values). 899 
Note that for within hemicord connectivity (where connectivity values are negative), smaller t-values mean that the negative 900 
connectivity gets stronger. 901 
  902 

 Dorsal 
Dorsal 

Ventral 
Ventral 

Within  
Hemicord 

Between  
Hemicord 

Baseline + 
Motion 
parameters 

t(44) = -8.0 

p < 0.001 

t(44) = -9.9 

p < 0.001 

t(44) = -6.1 

p < 0.001 

t(44) = -5.1 

p < 0.001 

Baseline + 
 CSF 

t(44) = -6.6 

p < 0.001 

 

t(44) = -8.1 

p < 0.001 

 

t(44) = 0.4 

p = 0.98 

 

t(44) = -0.6 

p = 0.93 

 

Baseline + 
Respiratory 

t(44) = -8.8 

p < 0.001 

 

t(44) = -11.3 

p < 0.001 

 

t(44) = -7.0 

p < 0.001 

 

t(44) = -6.1 

p < 0.001 

 

Baseline + 
Cardiac 

t(44) = -10.5 

p < 0.001 

 

t(44) = -11.1 

p < 0.001 

 

t(44) = -1.0 

p = 0.68 

 

t(44) = 1.1 

p = 0.64 

 

Baseline + 
PNM 

t(44) = -11.4 

p < 0.001 

 

t(44) = -16.3 

p < 0.001 

 

t(44) = -5.6 

p < 0.001 

 

t(44) = -2.6 

p = 0.04 

 

Maximal 
t(44) = -11.6 

p < 0.001 

t(44) = -17.8 

p < 0.001 

t(44) = -5.9 

p < 0.001 

t(44) = -3.0 

p = 0.01 
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Table 3. Functional connectivity and its reliability after thermal noise correction procedures. 903 

This table depicts functional connectivity and reliability results of each connection for different thermal noise correction processing 904 
pipelines. r represents the mean Pearson correlation across participants, t and p represent the t-value and two-tailed FWE-corrected 905 
(for four tests) p-value from a permutation test (against 0), respectively. ICC(95% CI) represents ICC(2,1) values and 95% 906 
bootstrapped confidence intervals. 907 
  908 

 
Dorsal 
Dorsal 

Ventral 
Ventral 

Within  
Hemicord 

Between  
Hemicord 

Maximal 

r = 0.03 

t = 9.5 

p < 0.001 

ICC (95% CI) = 
0.59 (0.46 – 0.74) 

r = 0.05 

t = 11.6 

p < 0.001 

ICC (95% CI) = 
0.63 (0.44 – 0.79) 

r = -0.02 

t = -10.7 

p < 0.001 

ICC (95% CI) = 
0.30 (0.06 – 0.53) 

r = 0.01 

t = 6.7 

p < 0.001 

ICC (95% CI) = 
0.18 (-0.03 – 0.38) 

Thermal noise 
removal + 
maximal 

r = 0.12 

t = 16.7 

p < 0.001 

ICC (95% CI) = 
0.49 (0.31 – 0.69) 

r = 0.20 

t = 22.9 

p < 0.001 

ICC (95% CI) = 
0.55 (0.34 – 0.73) 

r = 0.07 

t = 15.6 

p < 0.001 

ICC (95% CI) = 
0.30 (0.02 – 0.56) 

r = 0.05 

t = 10.6 

p < 0.001 

ICC (95% CI) = 
0.39 (0.20 – 0.58) 

Maximal + 
2mm 
smoothing 

r = 0.09 

t = 14.3 

p < 0.001 

ICC (95% CI) = 
0.62 (0.46 – 0.77) 

r = 0.12 

t = 13.9 

p < 0.001 

ICC (95% CI) = 
0.79 (0.65 – 0.89) 

r = 0.17 

t = 29.1 

p < 0.001 

ICC (95% CI) = 
0.63 (0.30 – 0.79) 

r = 0.05 

t = 13.4 

p < 0.001 

ICC (95% CI) = 
0.37 (0.12 – 0.56) 

Maximal + 
4mm 
smoothing 

r = 0.29 

t = 28.3 

p < 0.001 

ICC (95% CI) = 
0.73 (0.55 – 0.84) 

r = 0.46 

t = 33.6 

p < 0.001 

ICC (95% CI) = 
0.81 (0.67 – 0.89) 

r = 0.49 

t = 64.4 

p < 0.001 

ICC (95% CI) = 
0.63 (0.41 – 0.77) 

r = 0.18 

t = 19.8 

p < 0.001 

ICC (95% CI) = 
0.73 (0.58 – 0.84) 
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Table 4. Functional connectivity and its reliability for different spinal segments. 909 

This table depicts functional connectivity and reliability results of each connection at different spinal segments. r represents the mean 910 
Pearson correlation across participants, t and p represent the t-value and two-tailed family-wise-error corrected p-value from a 911 
permutation test (against 0), respectively. ICC (95% CI) represents ICC(2,1) values and 95% bootstrapped confidence intervals. 912 

 
Dorsal 
Dorsal 

Ventral 
Ventral 

Within  
Hemicord 

Between  
Hemicord 

C3 

r = 0.12 

t = 9.2 

p < 0.001 

ICC (95% CI) = 
0.16 (-0.24 – 0.48) 

r = 0.20 

t = 8.9 

p < 0.001 

ICC (95% CI) = 
0.35 (0.06 – 0.66) 

r = 0.07 

t = 5.0 

p < 0.001 

ICC (95% CI) = 
0.30 (0.03 – 0.55) 

r = 0.04 

t = 4.6 

p < 0.001 

ICC (95% CI) = 0.04 
(-0.23 – 0.37) 

C4 

r = 0.17 

t = 13.6 

p < 0.001 

ICC (95% CI) = 
0.31 (0.09 – 0.48) 

r = 0.25 

t = 13.3 

p < 0.001 

ICC (95% CI) = 
0.48 (0.27 – 0.69) 

r = 0.06 

t = 5.5 

p < 0.001 

ICC (95% CI) = 
0.34 (0.08 – 0.61) 

r = 0.04 

t = 4.2 

p < 0.001 

ICC (95% CI) = 
0.21 (-0.07 – 0.58) 

C5 

r = 0.15 

t = 10.9 

p < 0.001 

ICC (95% CI) = 
0.25 (0.04 – 0.50) 

r = 0.25 

t = 12.5 

p < 0.001 

ICC (95% CI) = 
0.53 (0.29 – 0.79) 

r = 0.06 

t = 5.7 

p < 0.001 

ICC (95% CI) = 
0.35 (0.09 – 0.59) 

r = 0.03 

t = 2.6 

p = 0.07 

ICC (95% CI) = 0.36 
(0.11 – 0.58) 

C6 

r = 0.11 

t = 7.5 

p < 0.001 

ICC (95% CI) = 
0.47 (0.23 – 0.68) 

r = 0.19 

t = 16.3 

p < 0.001 

ICC (95% CI) = 
0.38 (0.17 – 0.60) 

r = 0.09 

t = 12.4 

p < 0.001 

ICC (95% CI) =    -
0.24 (-0.52 – 0.0) 

r = 0.05 

t = 7.5 

p < 0.001 

ICC (95% CI) = 0.03 
(-0.45 – 0.37) 

C7 

r = 0.09 

t = 11.5 

p < 0.001 

ICC (95% CI) = 
0.09 (-0.29 – 0.45) 

r = 0.16 

t = 18.2 

p < 0.001 

ICC (95% CI) = 
0.49 (0.14 – 0.69) 

r = 0.07 

t = 8.1 

p < 0.001 

ICC (95% CI) = 
0.26 (0.0 – 0.49) 

r = 0.04 

t = 7.2 

p < 0.001 

ICC (95% CI) = 0.03 
(-0.23 – 0.28) 

C8 

r = 0.049 

t = 9.5 

p < 0.001 

ICC (95% CI) = 
0.23 (-0.20 – 0.55) 

r = 0.18 

t = 16.6 

p < 0.001 

ICC (95% CI) = 
0.30 (-0.13 – 0.57) 

r = 0.09 

t = 9.9 

p < 0.001 

ICC (95% CI) = 
0.28 (0.01 – 0.52) 

r = 0.07 

t = 14.0 

p < 0.001 

ICC (95% CI) =    -
0.23 (-0.46 – 0.04) 

T1 

r = 0.09 

t = 7.0 

p < 0.001 

ICC (95% CI) = 
0.01 (-0.22 – 0.28) 

r = 0.15 

t = 12.2 

p < 0.001 

ICC (95% CI) = 
0.44 (0.19 – 0.66) 

r = 0.07 

t = 6.9 

p < 0.001 

ICC (95% CI) = 
0.20 (-0.09 – 0.45) 

r = 0.05 

t = 4.8 

p < 0.001 

ICC (95% CI) = 0.15 
(-0.09 – 0.41) 
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Supplementary Material 1231 

 1232 

 1233 

Figure S1. Partial correlation vs Pearson correlation. The top panels depict functional connectivity 1234 
estimates between different ROIs calculated with either partial correlation or Pearson correlation 1235 
(average across two sessions) using grouped box plots for the seven denoising pipelines. For the box 1236 
plots, median and mean are denoted by the central black and red marks, respectively. The bottom and 1237 
top edges of the boxes represent the 25th and 75th percentiles, respectively, with the whiskers 1238 
encompassing ~99% of the data, and the outliers being denoted with red dots. The bottom panels depict 1239 
ICC values for different denoising pipelines with dots and lines denote 95% confidence intervals. The 1240 
gray scale background reflects the ICC ranges (as defined by Cicchetti & Sparrow (1981) and Hallgren 1241 
(2012)): poor <0.4, fair 0.4–0.59, good 0.6–0.74, excellent ≥0.75.  1242 
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Table S1. Functional connectivity and its reliability after addition of pre-whitening to the 1243 
maximal denoising pipeline. 1244 

This table depicts functional connectivity and reliability results of each connection for two processing pipelines: the maximal pipeline 1245 
and the maximal pipeline with the inclusion of FILM pre-whitening. r represents the mean Pearson correlation across participants, t 1246 
and p represent the t-value and two-tailed family-wise-error corrected p-value from a permutation test (against 0), respectively. ICC 1247 
(95% CI) represents ICC(2,1) values and 95% bootstrapped confidence intervals. 1248 

  1249 

 
Dorsal 
Dorsal 

Ventral 
Ventral 

Within  
Hemicord 

Between  
Hemicord 

Maximal 

r = 0.03 

t = 9.5 

p < 0.001 

ICC (95% CI) = 
0.59 (0.46 – 0.74) 

r = 0.05 

t = 11.6 

p < 0.001 

ICC (95% CI) = 
0.63 (0.44 – 0.79) 

r = -0.02 

t = -10.7 

p < 0.001 

ICC (95% CI) = 
0.30 (0.06 – 0.53) 

r = 0.01 

t = 6.7 

p < 0.001 

ICC (95% CI) = 
0.18 (-0.03 – 0.38) 

Maximal + 
Pre-whitening 

r = 0.03 

t = 9.6 

p < 0.001 

ICC (95% CI) = 
0.59 (0.46 – 0.74) 

r = 0.05 

t = 11.7 

p < 0.001 

ICC (95% CI) = 
0.65 (0.47 – 0.80) 

r = -0.02 

t = -10.6 

p < 0.001 

ICC (95% CI) = 
0.29 (0.06 – 0.52) 

r = 0.01 

t = 6.7 

p < 0.001 

ICC (95% CI) = 
0.17 (-0.05 – 0.37) 
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 1250 

 1251 
Figure S2. Euclidian distance between ROIs. Box plots show the median Euclidian distance between 1252 
the closest voxels of different ROIs (within each slice) across slices and participants. The median is 1253 
denoted by the central red line. The bottom and top edges of the boxes represent the 25th and 75th 1254 
percentiles, respectively, with the whiskers encompassing ~99% of the data, and the outliers are denoted 1255 
with the red crosses. 1256 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.23.521768doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.23.521768
http://creativecommons.org/licenses/by-nc-nd/4.0/

