46 research outputs found
Recommended from our members
Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids
Small RNAs, including microRNAs (miRNAs), small interfering RNAs
(siRNAs), and trans-acting siRNAs (tasiRNAs), control gene expression
and epigenetic regulation. Although the roles of miRNAs and
siRNAs have been extensively studied, their expression diversity
and evolution in closely related species and interspecific hybrids
are poorly understood. Here, we show comprehensive analyses of
miRNA expression and siRNA distributions in two closely related
species Arabidopsis thaliana and Arabidopsis arenosa, a natural
allotetraploid Arabidopsis suecica, and two resynthesized allotetraploid
lines (F1 and F7) derived from A. thaliana and A. arenosa.We
found that repeat- and transposon-associated siRNAs were highly
divergent between A. thaliana and A. arenosa. A. thaliana siRNA
populations underwent rapid changes in F1 but were stably maintained
in F7 and A. suecica. The correlation between siRNAs and
nonadditive gene expression in allopolyploids is insignificant. In
contrast, miRNA and tasiRNA sequences were conserved between
species, but their expression patterns were highly variable between
the allotetraploids and their progenitors. Many miRNAs
tested were nonadditively expressed (deviating from the midparent
value, MPV) in the allotetraploids and triggered unequal
degradation of A. thaliana or A. arenosa targets. The data suggest
that small RNAs produced during interspecific hybridization or
polyploidization serve as a buffer against the genomic shock in
interspecific hybrids and allopolyploids: Stable inheritance of repeat-
associated siRNAs maintains chromatin and genome stability,
whereas expression variation of miRNAs leads to changes in gene
expression, growth vigor, and adaptation.Keywords: microRNAs, polyploidy, hybrid vigor, expression regulatio
RNA-interference in rice against Rice tungro bacilliform virus results in its decreased accumulation in inoculated rice plants
Rice tungro is a viral disease seriously affecting rice production in South and Southeast Asia. Tungro is caused by the simultaneous infection in rice of Rice tungro bacilliform virus (RTBV), a double-stranded DNA virus and Rice tungro spherical virus (RTSV), a single-stranded RNA virus. To apply the concept of RNA-interference (RNAi) for the control of RTBV infection, transgenic rice plants expressing DNA encoding ORF IV of RTBV, both in sense as well as in anti-sense orientation, resulting in the formation of double-stranded (ds) RNA, were raised. RNA blot analysis of two representative lines indicated specific degradation of the transgene transcripts and the accumulation of small molecular weight RNA, a hallmark for RNA-interference. In the two transgenic lines expressing ds-RNA, different resistance responses were observed against RTBV. In one of the above lines (RTBV-O-Ds1), there was an initial rapid buildup of RTBV levels following inoculation, comparable to that of untransformed controls, followed by a sharp reduction, resulting in approximately 50-fold lower viral titers, whereas the untransformed controls maintained high levels of the virus till 40 days post-inoculation (dpi). In RTBV-O-Ds2, RTBV DNA levels gradually rose from an initial low to almost 60% levels of the control by 40 dpi. Line RTBV-O-Ds1 showed symptoms of tungro similar to the untransformed control lines, whereas line RTBV-O-Ds2 showed extremely mild symptoms
Regulated Nuclear Trafficking of rpL10A Mediated by NIK1 Represents a Defense Strategy of Plant Cells against Virus
The NSP-interacting kinase (NIK) receptor-mediated defense pathway has been identified recently as a virulence target of the geminivirus nuclear shuttle protein (NSP). However, the NIK1–NSP interaction does not fit into the elicitor–receptor model of resistance, and hence the molecular mechanism that links this antiviral response to receptor activation remains obscure. Here, we identified a ribosomal protein, rpL10A, as a specific partner and substrate of NIK1 that functions as an immediate downstream effector of NIK1-mediated response. Phosphorylation of cytosolic rpL10A by NIK1 redirects the protein to the nucleus where it may act to modulate viral infection. While ectopic expression of normal NIK1 or a hyperactive NIK1 mutant promotes the accumulation of phosphorylated rpL10A within the nuclei, an inactive NIK1 mutant fails to redirect the protein to the nuclei of co-transfected cells. Likewise, a mutant rpL10A defective for NIK1 phosphorylation is not redirected to the nucleus. Furthermore, loss of rpL10A function enhances susceptibility to geminivirus infection, resembling the phenotype of nik1 null alleles. We also provide evidence that geminivirus infection directly interferes with NIK1-mediated nuclear relocalization of rpL10A as a counterdefensive measure. However, the NIK1-mediated defense signaling neither activates RNA silencing nor promotes a hypersensitive response but inhibits plant growth and development. Although the virulence function of the particular geminivirus NSP studied here overcomes this layer of defense in Arabidopsis, the NIK1-mediated signaling response may be involved in restricting the host range of other viruses
Assessing the genetic variation of Ty-1 and Ty-3 alleles conferring resistance to Tomato Yellow Leaf Curl Virus in a broad tomato germplasm
The online version of
this article (doi:10.1007/s11032-015-0329-y) contains supplementary
material, which is available to authorized users.[EN] Tomato yellow leaf curl virus (TYLCV) hampers tomato production worldwide. Our previous studies have focussed on mapping and ultimately cloning of the TYLCV resistance genes Ty-1 and Ty-3. Both genes are derived from Solanum chilense and were shown to be allelic. They code for an RNA-dependent RNA polymerase (RDR) belonging to the RDR gamma type defined by a DFDGD catalytic domain. In this study, we first fine-mapped the TYLCV resistance in S. chilense LA1932, LA1960 and LA1971. Results showed that chromosomal intervals of the causal genes in these TYLCV-resistant accessions overlap and cover the region where Ty-1/Ty-3 is located. Further, virus-induced gene silencing was used to silence Ty-1/Ty-3 in tomato lines carrying TYLCV resistance introgressed from S. chilense LA1932, LA1938 and LA1971. Results showed that silencing Ty-1/Ty-3 compromised the resistance in lines derived from S. chilense LA1932 and LA1938. The LA1971-derived material remained resistant upon silencing Ty-1/Ty-3. Further, we studied the allelic variation of the Ty-1/Ty-3 gene by examining cDNA sequences from nine S. chilense-derived lines/accessions and more than 80 tomato cultivars, landraces and accessions of related wild species. The DFDGD catalytic domain of the Ty-1/Ty-3 gene is conserved among all tomato lines and species analysed. In addition, the 12 base pair insertion at the 5-prime part of the Ty-1/Ty-3 gene was found not to be specific for the TYLCV resistance allele. However, compared with the susceptible ty-1 allele, the Ty-1/Ty-3 allele is characterized by three specific amino acids shared by seven TYLCV-resistant S. chilense accessions or derived lines. Thus, Ty-1/Ty-3-specific markers can be developed based on these polymorphisms. Elevated transcript levels were observed for all tested S. chilense RDR alleles (both Ty-1 and ty-1 alleles), demonstrating that elevated expression level is not a good selection criterion for a functional Ty-1/Ty-3 allele.The infectious TYLCV clone was kindly provided by Professor Eduardo Rodriguez Bejarano (Universidad de Malaga). We thank Dick Lohuis for his help with agro-infiltrations, Marc Hendriks and Marjon Arens for RNA isolation and sequencing. This project was financed by the Centre for BioSystems Genomics (CBSG), which is part of the Netherlands Genomics Initiative/Netherlands Organization for Scientific Research (http://www.cbsg.nl). Olga Julian was granted a scholarship by Generalitat Valenciana. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Caro, M.; Verlaan, MG.; Julián Rodríguez, O.; Finkers, R.; Wolters, AA.; Hutton, S.; Scott, JW.... (2015). Assessing the genetic variation of Ty-1 and Ty-3 alleles conferring resistance to Tomato Yellow Leaf Curl Virus in a broad tomato germplasm. Molecular Breeding. 35. doi:10.1007/s11032-015-0329-yS13235Agrama H, Scott J (2006) Quantitative trait loci for tomato yellow leaf curl virus and tomato mottle virus resistance in tomato. J Am Soc Hortic Sci 131:267–272Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, Chen L, Lapidot M, Levin I (2009) Molecular dissection of tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Genet 119:519–530Bai Y, Van der Hulst R, Huang C, Wei L, Stam P, Lindhout P (2004) Mapping Ol-4, a gene conferring resistance to Oidium neolycopersici and originating from Lycopersicon peruvianum LA2172, requires multi-allelic, single-locus markers. Theor Appl Genet 109:1215–1223Butterbach P, Verlaan MG, Dullemans A, Lohuis D, Visser RGF, Bai Y, Kormelink R (2014) The TYLCV Resistance Gene Ty-1 confers resistance in tomato through enhanced transcriptional gene silencing. PNAS 111:12942–12947Cohen S, Lapidot M (2007) Appearance and expansion of TYLCV: a historical point of view. In: Czosnek H (ed) Tomato yellow leaf curl virus disease. Springer, The Netherlands, pp 3–12Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, Group GPA (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158Fauquet CM, Briddon RW, Brown JK, Moriones E, Stanley J, Zerbini M, Zhou X (2008) Geminivirus strain demarcation and nomenclature. Arch Virol 153:783–821Friedmann M, Lapidot M, Cohen S, Pilowsky M (1998) A novel source of resistance to Tomato yellow leaf curl virus exhibiting a symptomless reaction to viral infection. J Am Soc Hortic Sci 123:1004–1007Hanson PM, Green SK, Kuo G (2006) Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato. Tomato Genet Coop Rep 56:17–18Hutton SF, Scott JW (2013) Fine-mapping and cloning of Ty-1 and Ty-3; and mapping of a new TYLCV resistance locus, “Ty-6”. In: Tomato breeders round table proceedings 2013, Chiang Mai, ThailandHutton SF, Scott JW, Schuster DJ (2012) Recessive resistance to tomato yellow leaf curl virus from the tomato cultivar tyking is located in the same region as Ty-5 on chromosome 4. HortScience 47:324–327Ji Y, Schuster DJ, Scott JW (2007) Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol Breeding 20:271–284Ji Y, Scott JW, Schuster DJ, Maxwell DP (2009) Molecular mapping of Ty-4, a new tomato yellow leaf curl virus resistance locus on chromosome 3 of tomato. J Am Soc Hortic Sci 134:281–288Levin I, Karniel U, Fogel D, Reuveni M, Gelbart D, Evenor D, Chen L, Nahon S, Shlomo H, Machbosh Z, Lapidot M (2013) Cloning and analysis of the tomato yellow leaf curl virus resistance gene Ty-5. In: Tomato breeders round table proceedings 2013, Chiang Mai, ThailandLi H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079Mejía L, Teni RE, Vidavski F, Czosnek H, Lapidot M, Nakhla MK, Maxwell DP (2005) Evaluation of tomato germplasm and selection of breeding lines for resistance to begomoviruses in Guatemala. In: Momol MT, Ji P, Jones JB (eds) Proceedings 1st international symposium on tomato diseases. Acta Horticult 695:251–256Menda N, Strickler SR, Edwards JD, Bombarely A, Dunham DM, Martin GB, Mejia L, Hutton SF, Havey MJ, Maxwell DP, Mueller LA (2014) Analysis of wild-species introgressions in tomato inbreds uncovers ancestral origins. BMC Plant Biol 14(1):287Pérez de Castro A, Díez MJ, Nuez F (2007) Inheritance of Tomato yellow leaf curl virus resistance derived from Solanum pimpinellifolium UPV16991. Plant Dis 91:879–885Pérez de Castro A, Julián O, Díez M (2013) Genetic control and mapping of Solanum chilense LA1932, LA1960 and LA1971-derived resistance to tomato yellow leaf curl disease. Euphytica 190:203–214Pico B, Ferriol M, Diez MJ, Nuez F (1999) Developing tomato breeding lines resistant to tomato yellow leaf curl virus. Plant Breeding 118:537–542Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nature. Biotech 29:24–26Sahu PP, Puranik S, Khan M, Prasad M (2012) Recent advances in tomato functional genomics: utilization of VIGS. Protoplasma 249(4):1017–1027Scott JW, Stevens MR, Barten JHM, Thome CR, Polston JE, Schuster DJ, Serra CA (1996) Introgression of resistance to whitefly-transmitted geminiviruses from Lycopersicon chilense to tomato. In: Gerling D, Mayer RT (eds) Bemisia 1995; taxonomy, biology, damage control, and management. Intercept Press, Andover, pp 357–367Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739The 100 Tomato Genome Sequencing Consortium (2014) Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J 80:136–148The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641Vanitharani R, Chellappan P, Pita JS, Fauquet CM (2004) Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of posttranscriptional gene silencing. J Virol 78:9487–9498Verlaan MG, Szinay D, Hutton SF, de Jong H, Kormelink R, Visser RGF, Scott JW, Bai Y (2011) Chromosomal rearrangements between tomato and Solanum chilense hamper mapping and breeding of the TYLCV resistance gene Ty-1. Plant J 68:1093–1103Verlaan MG, Hutton SF, Ibrahem RM, Kormelink R, Visser RGF, Scott JW, Edwards JD, Bai Y (2013) The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases. PLoS Genet 9(3):e1003399. doi: 10.1371/journal.pgen.1003399Vidavski F (2007) Exploitation of resistance genes found in wild tomato species to produce resistant cultivars; Pile up of Resistant Genes. In: Czosnek H (ed) Tomato yellow leaf curl virus disease. Springer, Netherlands, pp 363–372Willmann MR, Endres MW, Cook RT, Gregory BD (2011) The functions of RNA-dependent RNA polymerases in arabidopsis. In: The Arabidopsis Book, e0146Yang X, Caro M, Hutton SF, Scott JW, Guo Y, Wang X, Rashid MH, Szinay D, de Jong H, Visser RGF, Bai Y, Du Y (2014) Fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. Mol Breeding 34:749–760Zamir D, Ekstein Michelson I, Zakay Y, Navot N, Zeidan M, Sarfatti M, Eshed Y, Harel E, Pleban T, van Oss H (1994) Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theor Appl Genet 88:141–14
Short Interfering RNA Accumulation Correlates with Host Recovery in DNA Virus-Infected Hosts, and Gene Silencing Targets Specific Viral Sequences
Viruses are both inducers and targets of posttranscriptional gene silencing (PTGS), a natural defense mechanism in plants. Here we report molecular evidence of the ability of single-stranded DNA (ssDNA) viruses to induce PTGS in infected plants irrespective of the severity of or recovery from the symptoms. Our results reveal that five distinct species of cassava-infecting geminiviruses were capable of triggering PTGS by producing two classes of virus-specific short interfering RNAs (siRNAs) of 21 to 26 nucleotides in two plant hosts, tobacco (Nicotiana benthamiana) and cassava (Manihot esculenta, Crantz). However, the efficacy of virus-induced PTGS varied depending on the intrinsic features of the virus and its interaction with the plant host. We found that symptom recovery over time in plants infected with the isolates of African cassava mosaic virus (ACMV-[CM]) or Sri Lankan cassava mosaic virus was associated with a much higher level of virus-derived siRNA accumulation compared to plants infected with viruses that do not show symptom recovery. Furthermore, we determined that the C terminus of AC1 that overlaps with the N terminus of AC2 early viral genes involved in virus replication were the primary targets for ACMV-[CM]-induced PTGS, whereas the C terminus of BC1 was targeted for the East African cassava mosaic Cameroon virus. In addition, our results reveal the possibility for double-stranded RNA formation during transcription in ssDNA viruses, which explains in part how these viruses can trigger PTGS in plants
A novel shaggy-like kinase interacts with the Tomato leaf curl virus pathogenicity determinant C4 protein
Tomato leaf curl virus-Australia (ToLCV) C4 protein has been shown to be associated with virus pathogenesis. Here, we demonstrate that C4 acts as a suppressor of gene silencing. To understand the multifunctional role of C4, a novel shaggy-like kinase (SlSK) from tomato, which interacts with ToLCV C4 in a yeast two-hybrid assay, was isolated and interaction between these proteins was confirmed in vitro and in planta. Using deletion analysis of C4, a 12 amino acid region in the C-terminal part of C4 was identified which was shown to be essential for its binding to SlSK. We further demonstrate that this region is not only important for the interaction of C4 with SlSK, but is also required for C4 function to suppress gene silencing activity and to induce virus symptoms in a PVX system. The potential significance of ToLCV C4 and SlSK interaction is discussed.Satish C. Dogra, Omid Eini, M. Ali Rezaian and John W. Randle
Engineering resistance to geminiviruses--review and perspectives.
peer reviewedaudience: researcher, professionalFollowing the conceptual development of virus resistance strategies ranging from coat protein-mediated interference of virus propagation to RNA-mediated virus gene silencing, much progress has been achieved to protect plants against RNA and DNA virus infections. Geminiviruses are a major threat to world agriculture, and breeding resistant crops against these DNA viruses is one of the major challenges faced by plant virologists and biotechnologists. In this article, we review the most recent transgene-based approaches that have been developed to achieve durable geminivirus resistance. Although most of the strategies have been tested in model plant systems, they are ready to be adopted for the protection of crop plants. Furthermore, a better understanding of geminivirus gene and protein functions, as well as the native immune system which protects plants against viruses, will allow us to develop novel tools to expand our current capacity to stabilize crop production in geminivirus epidemic zones