72 research outputs found
Quantifying the improvement of surrogate indices of hepatic insulin resistance using complex measurement techniques
We evaluated the ability of simple and complex surrogate-indices to identify individuals from an overweight/obese cohort with hepatic insulin-resistance (HEP-IR). Five indices, one previously defined and four newly generated through step-wise linear regression, were created against a single-cohort sample of 77 extensively characterised participants with the metabolic syndrome (age 55.6±1.0 years, BMI 31.5±0.4 kg/m2; 30 males). HEP-IR was defined by measuring endogenous-glucose-production (EGP) with [6–62H2] glucose during fasting and euglycemic-hyperinsulinemic clamps and expressed as EGP*fasting plasma insulin. Complex measures were incorporated into the model, including various non-standard biomarkers and the measurement of body-fat distribution and liver-fat, to further improve the predictive capability of the index. Validation was performed against a data set of the same subjects after an isoenergetic dietary intervention (4 arms, diets varying in protein and fiber content versus control). All five indices produced comparable prediction of HEP-IR, explaining 39–56% of the variance, depending on regression variable combination. The validation of the regression equations showed little variation between the different proposed indices (r2 = 27–32%) on a matched dataset. New complex indices encompassing advanced measurement techniques offered an improved correlation (r = 0.75, P<0.001). However, when validated against the alternative dataset all indices performed comparably with the standard homeostasis model assessment for insulin resistance (HOMA-IR) (r = 0.54, P<0.001). Thus, simple estimates of HEP-IR performed comparable to more complex indices and could be an efficient and cost effective approach in large epidemiological investigations
Recommended from our members
Exome sequencing of Finnish isolates enhances rare-variant association power.
Exome-sequencing studies have generally been underpowered to identify deleterious alleles with a large effect on complex traits as such alleles are mostly rare. Because the population of northern and eastern Finland has expanded considerably and in isolation following a series of bottlenecks, individuals of these populations have numerous deleterious alleles at a relatively high frequency. Here, using exome sequencing of nearly 20,000 individuals from these regions, we investigate the role of rare coding variants in clinically relevant quantitative cardiometabolic traits. Exome-wide association studies for 64 quantitative traits identified 26 newly associated deleterious alleles. Of these 26 alleles, 19 are either unique to or more than 20 times more frequent in Finnish individuals than in other Europeans and show geographical clustering comparable to Mendelian disease mutations that are characteristic of the Finnish population. We estimate that sequencing studies of populations without this unique history would require hundreds of thousands to millions of participants to achieve comparable association power
Genetic basis and outcome in a nationwide study of Finnish patients with hypertrophic cardiomyopathy
Genetic basis and outcome in a nationwide study of Finnish patients with hypertrophic cardiomyopathy
Aims Nationwide large-scale genetic and outcome studies in cohorts with hypertrophic cardiomyopathy (HCM) have not been previously published.Methods and results We sequenced 59 cardiomyopathy-associated genes in 382 unrelated Finnish patients with HCM and found 24 pathogenic or likely pathogenic mutations in six genes in 38.2% of patients. Most mutations were located in sarcomere genes (MYBPC3, MYH7, TPM1, and MYL2). Previously reported mutations by our study group (MYBPC3-Gln1061Ter, MYH7-Arg1053Gln, and TPM1-Asp175Asn) and a fourth major mutation MYH7-Val606Met accounted for 28.0% of cases. Mutations in GLA and PRKAG2 were found in three patients. Furthermore, we found 49 variants of unknown significance in 31 genes in 20.4% of cases. During a 6.7 +/- 4.2 year follow-up, annual all-cause mortality in 482 index patients and their relatives with HCM was higher than that in the matched Finnish population (1.70 vs. 0.87%; P < 0.001). Sudden cardiac deaths were rare (n = 8). Systolic heart failure (hazard ratio 17.256, 95% confidence interval 3.266-91.170, P = 0.001) and maximal left ventricular wall thickness (hazard ratio 1.223, 95% confidence interval 1.098-1.363, P < 0.001) were independent predictors of HCM-related mortality and life-threatening cardiac events. The patients with a pathogenic or likely pathogenic mutation underwent an implantable cardioverter defibrillator implantation more often than patients without a pathogenic or likely pathogenic mutation (12.9 vs. 3.5%, P < 0.001), but there was no difference in all-cause or HCM-related mortality between the two groups. Mortality due to HCM during 10 year follow-up among the 5.2 million population of Finland was studied from death certificates of the National Registry, showing 269 HCM-related deaths, of which 32% were sudden.Conclusions We identified pathogenic and likely pathogenic mutations in 38% of Finnish patients with HCM. Four major sarcomere mutations accounted for 28% of HCM cases, whereas HCM-related mutations in non-sarcomeric genes were rare. Mortality in patients with HCM exceeded that of the general population. Finally, among 5.2 million Finns, there were at least 27 HCM-related deaths annually
Association of Ketone Body Levels With Hyperglycemia and Type 2 Diabetes in 9,398 Finnish Men
We investigated the association of the levels of ketone bodies (KBs) with hyperglycemia and with 62 genetic risk variants regulating glucose levels or type 2 diabetes in the population-based Metabolic Syndrome in Men (METSIM) study, including 9,398 Finnish men without diabetes or newly diagnosed type 2 diabetes. Increasing fasting and 2-h plasma glucose levels were associated with elevated levels of acetoacetate (AcAc) and β-hydroxybutyrate (BHB). AcAc and BHB predicted an increase in the glucose area under the curve in an oral glucose tolerance test, and AcAc predicted the conversion to type 2 diabetes in a 5-year follow-up of the METSIM cohort. Impaired insulin secretion, but not insulin resistance, explained these findings. Of the 62 single nucleotide polymorphisms associated with the risk of type 2 diabetes or hyperglycemia, the glucose-increasing C allele of GCKR significantly associated with elevated levels of fasting BHB levels. Adipose tissue mRNA expression levels of genes involved in ketolysis were significantly associated with insulin sensitivity (Matsuda index). In conclusion, high levels of KBs predicted subsequent worsening of hyperglycemia, and a common variant of GCKR was significantly associated with BHB levels
Profiles of glucose metabolism in different prediabetes phenotypes, classified by fasting glycemia, 2-hour OGTT, glycated hemoglobin, and 1-hour OGTT:An IMI DIRECT study
Differences in glucose metabolism among categories of prediabetes have not been systematically investigated. In this longitudinal study, participants (N = 2,111) underwent a 2-h 75-g oral glucose tolerance test (OGTT) at baseline and 48 months. HbA1c was also measured. We classified participants as having isolated prediabetes defect (impaired fasting glucose [IFG], impaired glucose tolerance [IGT], or HbA1c indicative of prediabetes [IA1c]), two defects (IFG+IGT, IFG+IA1c, or IGT+IA1c), or all defects (IFG+IGT+IA1c). β-Cell function (BCF) and insulin sensitivity were assessed from OGTT. At baseline, in pooling of participants with isolated defects, they showed impairment in both BCF and insulin sensitivity compared with healthy control subjects. Pooled groups with two or three defects showed progressive further deterioration. Among groups with isolated defect, those with IGT showed lower insulin sensitivity, insulin secretion at reference glucose (ISRr), and insulin secretion potentiation (P < 0.002). Conversely, those with IA1c showed higher insulin sensitivity and ISRr (P < 0.0001). Among groups with two defects, we similarly found differences in both BCF and insulin sensitivity. At 48 months, we found higher type 2 diabetes incidence for progressively increasing number of prediabetes defects (odds ratio >2, P < 0.008). In conclusion, the prediabetes groups showed differences in type/degree of glucometabolic impairment. Compared with the pooled group with isolated defects, those with double or triple defect showed progressive differences in diabetes incidence.</p
Predicting and elucidating the etiology of fatty liver disease : A machine learning modeling and validation study in the IMI DIRECT cohorts
Background Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately, hepatocellular carcinomas. We sought to expand etiological understanding and develop a diagnostic tool for NAFLD using machine learning. Methods and findings We utilized the baseline data from IMI DIRECT, a multicenter prospective cohort study of 3,029 European-ancestry adults recently diagnosed with T2D (n= 795) or at high risk of developing the disease (n= 2,234). Multi-omics (genetic, transcriptomic, proteomic, and metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry, measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input variables. The models were trained on MRI-image-derived liver fat content (= 5%) available for 1,514 participants. We applied LASSO (least absolute shrinkage and selection operator) to select features from the different layers of omics data and random forest analysis to develop the models. The prediction models included clinical and omics variables separately or in combination. A model including all omics and clinical variables yielded a cross-validated receiver operating characteristic area under the curve (ROCAUC) of 0.84 (95% CI 0.82, 0.86;p = 5%) rather than a continuous one. Conclusions In this study, we developed several models with different combinations of clinical and omics data and identified biological features that appear to be associated with liver fat accumulation. In general, the clinical variables showed better prediction ability than the complex omics variables. However, the combination of omics and clinical variables yielded the highest accuracy. We have incorporated the developed clinical models into a web interface (see:) and made it available to the community.Peer reviewe
Decrease in thyroid adenoma associated (THADA) expression is a marker of dedifferentiation of thyroid tissue
<p>Abstract</p> <p>Background</p> <p><it>Thyroid adenoma associated (THADA) </it>has been identified as the target gene affected by chromosome 2p21 translocations in thyroid adenomas, but the role of THADA in the thyroid is still elusive. The aim of this study was to quantify <it>THADA </it>gene expression in normal tissues and in thyroid hyper- and neoplasias, using real-time PCR.</p> <p>Methods</p> <p>For the analysis <it>THADA </it>and 18S rRNA gene expression assays were performed on 34 normal tissue samples, including thyroid, salivary gland, heart, endometrium, myometrium, lung, blood, and adipose tissue as well as on 85 thyroid hyper- and neoplasias, including three adenomas with a 2p21 translocation. In addition, <it>NIS </it>(<it>sodium-iodide symporter</it>) gene expression was measured on 34 of the pathological thyroid samples.</p> <p>Results</p> <p>Results illustrated that <it>THADA </it>expression in normal thyroid tissue was significantly higher (<it>p </it>< 0.0001, exact Wilcoxon test) than in the other tissues. Significant differences were also found between non-malignant pathological thyroid samples (goiters and adenomas) and malignant tumors (<it>p </it>< 0.001, Wilcoxon test, t approximation), anaplastic carcinomas (ATCs) and all other samples and also between ATCs and all other malignant tumors (<it>p </it>< 0.05, Wilcoxon test, t approximation). Furthermore, in thyroid tumors <it>THADA </it>mRNA expression was found to be inversely correlated with <it>HMGA2 </it>mRNA. <it>HMGA2 </it>expression was recently identified as a marker revealing malignant transformation of thyroid follicular tumors. A correlation between <it>THADA </it>and <it>NIS </it>has also been found in thyroid normal tissue and malignant tumors.</p> <p>Conclusions</p> <p>The results suggest <it>THADA </it>being a marker of dedifferentiation of thyroid tissue.</p
Genetic analysis of blood molecular phenotypes reveals common properties in the regulatory networks affecting complex traits
We evaluate the shared genetic regulation of mRNA molecules, proteins and metabolites derived from whole blood from 3029 human donors. We find abundant allelic heterogeneity, where multiple variants regulate a particular molecular phenotype, and pleiotropy, where a single variant associates with multiple molecular phenotypes over multiple genomic regions. The highest proportion of share genetic regulation is detected between gene expression and proteins (66.6%), with a further median shared genetic associations across 49 different tissues of 78.3% and 62.4% between plasma proteins and gene expression. We represent the genetic and molecular associations in networks including 2828 known GWAS variants, showing that GWAS variants are more often connected to gene expression in trans than other molecular phenotypes in the network. Our work provides a roadmap to understanding molecular networks and deriving the underlying mechanism of action of GWAS variants using different molecular phenotypes in an accessible tissue
- …