9 research outputs found

    Employment Protection Legislation in Europe: Employment and Well-Being

    Get PDF
    This cumulative thesis is on the effect of institutionally induced adjustment costs in labor markets. I study the effect of employment protection legislation for permanent workers on employment and well-being. In the first chapter, I review identification strategies for the effect of employment protection legislation, give an overview of my findings and discuss their external validity. In the preceding empirical chapters, I employ quasi-experimental approaches in order to identify the (causal) effect of employment protection at the individual- and at the establishment-level on temporary employment and on well-being proxied by life satisfaction

    Sensitivity of human pluripotent stem cells to insulin precipitation induced by peristaltic pump-based medium circulation: Considerations on process development

    Get PDF
    Controlled large-scale production of human pluripotent stem cells (hPSCs) is indispensable for their envisioned clinical translation. Aiming at advanced process development in suspension culture, the sensitivity of hPSC media to continuous peristaltic pump-based circulation, a well-established technology extensively used in hydraulically-driven bioreactors, was investigated. Unexpectedly, conditioning of low protein media (i.e. E8 and TeSR-E8) in a peristaltic pump circuit induced severe viability loss of hPSCs cultured as aggregates in suspension. Optical, biochemical, and cytological analyses of the media revealed that the applied circulation mode resulted in the reduction of the growth hormone insulin by precipitation of micro-sized particles. Notably, in contrast to insulin depletion, individual withdrawal of other medium protein components (i.e. bFGF, TGFÎČ1 or transferrin) provoked minor reduction of hPSC viability, if any. Supplementation of the surfactant glycerol or the use of the insulin analogue Aspart did not overcome the issue of insulin precipitation. In contrast, the presence of bovine or human serum albumin (BSA or HSA, respectively) stabilized insulin rescuing its content, possibly by acting as molecular chaperone-like protein, ultimately supporting hPSC maintenance. This study highlights the potential and the requirement of media optimization for automated hPSC processing and has broad implications on media development and bioreactor-based technologies. © 2017 The Author(s).Horizon 2020/Marie SkƂodowska-Curie Individual Fellowship POSEIDONDFG/EXC/REBIRTHDFG/EXC62/3DFG/ZW64/4-1BMBF/13N12606BMBF/13N14086StemBANCCH2020/TECHNOBEATHannover Medical School internal program (HiLF)Joachim Herz Stiftun

    Do firms demand temporary workers when they face workload fluctuation? Cross-country firm-level evidence

    Get PDF
    The growth of temporary employment is one of the most important transformations of labor markets in the past decades. Theoretically, firms' exposure to short-term workload fluctuations is a major determinant of employing temporary workers when employment protection for permanent workers is high. The authors investigate this relationship empirically with establishment-level data in a broad comparative framework. They create two novel data sets by merging 1) data on 18,500 European firms with 2) measures of labor-market institutions for 20 countries. Results show that fluctuations increase the probability of hiring temporary workers by 8 percentage points in countries with strict employment protection laws. No such effect is observed in countries with weaker employment protections. Results are robust to subgroups, subsamples, and alternative estimation strategies

    COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms.

    Get PDF
    Funder: Bundesministerium fĂŒr Bildung und ForschungFunder: Bundesministerium fĂŒr Bildung und Forschung (BMBF)We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective

    COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms

    No full text
    We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective

    COVID19 Disease Map, a computational knowledge repository of virus–host interaction mechanisms

    No full text
    We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective
    corecore