9 research outputs found

    Moisture-Dependent Engineering Properties of Chia (Salvia hispanica L.) Seeds

    Get PDF
    Salvia hispanica L., whose common name is chia, is an annual herbaceous plant belonging to the Lamiaceae or Labiatae family. This botanical species, native to southern Mexico and north‐ ern Guatemala, was an important crop in pre-Columbian Mesoamerica in conjunction with corn, beans and amaranth. Chia seeds were valuated not only for food, but also for medi‐ cines and paints [1]. Its cultivation was banned by Spanish conquerors and replaced by exot‐ ic crops (wheat and barley) [2]. Nowadays, chia seeds are being reintroduced to western diets in order to improve human health. These seeds have been investigated and recommended due to their oil content with the highest proportion of α-linolenic acid (omega-3) compared to other natural source known to date [3, 4], and also because of their high levels of protein, antioxidant, dietary fiber, vita‐ mins and minerals [5, 6]. Chia seeds from Argentina exhibited 30.0 - 38.6 g oil/100 g, with 60.7 - 67.8 g/100 g of α-linolenic acid [7, 8]. Figure 1 shows the chemical composition of chia seed [9]. Chia seed is traditionally consumed in Mexico, the southwestern U.S., and South America, but it is not widely known in Europe. However, in 2009, the European Union approved chia seeds as a novel food, allowing them to comprise up to 5% of a bread product´s total matter [10]. Today, chia is mostly grown in Mexico, Bolivia, Argentina, Ecuador, Australia, and Guatemala, and it has been demonstrated that the species has great potential as a future crop plant [7, 11].Salvia hispanica fruit consist in four nutlets, similar to an indehiscent achene, which contains a single seed. These nutlets, are commercially named as seeds, and in the text, we will use this last term. The plant produces small white and dark seeds. Most of chia population that is commercially grown today contains a low percentage of white seeds. Their shapes are oval and in general, the white seeds are somewhat larger than the black ones. Ixtaina et al. [12], reported length, width and thickness value of 2.11, 1.32 and 0.81 mm for dark seeds and 2.15, 1.40 and 0.83 mm for white seeds, respectively. Chia seeds are shown in Figure 2. Figure 2. Photographs of dark and white chia seeds (13x) The knowledge of engineering properties constitutes important and essential data for the design of machines, storage structures, and processes. The value of this basic information is not only important to engineers but also to food scientists, processors, and other scientists who may exploit these properties and find new uses.Engineering seed properties and their dependence on moisture content are necessary in the design of equipment for transporting, storage and/or processing. The knowledge of the mor‐ phology and size distribution of chia seeds is essential for the adequate design of the equip‐ ment for cleaning, grading and separation. Gravimetric properties are useful for the design of equipment related to aeration, drying, storage and transport. Bulk density determines the capacity of storage and transport systems while true density is useful for separation equip‐ ment; porosity of the mass of seeds determines the resistance to airflow during the aeration and drying of seeds. The frictional properties, such as the angle of repose and the static coef‐ ficient of friction, are important for the design of grain bins and other storage structures whose operation is influenced by the compressibility and flow behaviour of materials. Sev‐ eral researchers investigated the moisture dependence of engineering properties of seed or grain and reported different behaviour of these properties as a function moisture content. The aim of this work was to evaluate the engineering properties of dark chia seed as a func‐ tion of the moisture content and to compare their behavior with that of other grains.Fil: Guiotto, Estefania Nancy. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarría. Grupo Tecnologías de Semillas; ArgentinaFil: Ixtaina, Vanesa Yanet. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarría. Grupo Tecnologías de Semillas; ArgentinaFil: Tomás, Mabel Cristina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Nolasco, Susana Maria. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarría. Grupo Tecnologías de Semillas; Argentin

    Preserving and Delivery Systems of Bioactives and Functional Compounds of Chia Seed (Salvia hispanica L.)

    No full text
    There is growing interest in the development of edible delivery systems to enrich, protect and release bioactive compounds within foods. Emulsion-based systems are a good strategy for this purpose. Considering that chia oil (high levels of omega-3 fatty acids) is very susceptible to lipid oxidation, conventional and bilayer O/W emulsions were studied as a function of refrigerated storage. Monolayer emulsions were stabilized with deoiled sunflower lecithin while, in the case of bilayer ones, chitosan was also added by applying the electrostatic deposition technique. Bilayer emulsions presented a monomodal droplet size distribution while a shoulder towards larger particle sizes appeared for the conventional systems. Some signs of destabilization by the creaming process were recorded for monolayer emulsions, instead of the high stability associated with the other ones. The presence of chitosan significantly affected the rheological characteristics of emulsions by increasing their viscosity and modifying their flow behavior. In terms of oxidative stability, bilayer emulsions recorded the lowest PV values during the refrigerated storage and represent a better protective system than other ones included in the bulk oil. Thus, bilayer emulsions are a suitable option for the delivery of chia omega-3 and other PUFAs, with potential application in the food industry

    Estudio del almacenamiento de semillas ricas en lípidos mediante calorimetría diferencial de barrido y espectroscopía infrarroja de transformada de Fourier

    No full text
    Trabajo presentado a la 2da Runión Argentina de biología de Semillas, celebrada de forma virtual los días 27, 28 y 29 de Octubre de 2021.Peer reviewe

    Rapid and noninvasive tools to understand lipid role in seed storage: Dsc and Ft-Ir

    No full text
    Resumen del trabajo presentado al Virtual Annual Meeting CRYO, celebrado del 20 al 23 de julio de 2021.This work was performed thanks to project PICT 2018-2352 of the National Agency for Science and Technology Promotion from Argentina.Peer reviewe

    Supercritical Carbon Dioxide Extraction and Characterization of Argentinean Chia Seed Oil

    Get PDF
    Extraction of chia seed oil was performed with supercritical carbon dioxide (SC-CO2). To investigate the effects of pressure and temperature on the oil solubility and yield, two isobaric (250 and 450 bar) and two isothermal (40 and 60 °C) extraction conditions were selected. The global extraction yield of chia oil increased with pressure enhancement, but temperature had a little influence on it. The maximum oil recovery using SC-CO2 at a mass flow rate of 8 kg/h was 97%, which was obtained at 60 °C, 450 bar for a 138-min extraction. The results showed that solubility changed from 4.8 g oil/kg CO2 at 60 °C–250 bar to 28.8 g oil/kg CO2 at 60 °C–450 bar. The final extract obtained by SC-CO2 under different conditions and Soxhlet extraction contained mainly α-linolenic (64.9–65.6%) and linoleic (19.8–20.3%) acids. SC-CO2 extraction is an interesting alternative methodology because it is possible to achieve a chia oil yield close to that obtained by conventional extraction with a similar fatty acid composition using an environmentally friendly process.Fil: Ixtaina, Vanesa Yanet. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; ArgentinaFil: Mattea, Facundo. Universidad de Valladolid; EspañaFil: Cardarelli, Damián Aldo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; ArgentinaFil: Mattea, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; ArgentinaFil: Nolasco, Susana Maria. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; ArgentinaFil: Tomás, Mabel Cristina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentin
    corecore