76 research outputs found
Wavefront attributes in anisotropic media
Surface-measured wavefront attributes are the key ingredient to multiparameter methods, which are nowadays standard tools in seismic data processing. However, most operators are restricted to application to isotropic media. Whereas application of an isotropic operator will still lead to satisfactory stack results, further processing steps that interpret isotropic stacking parameters in terms of wavefront attributes will lead to erroneous results if anisotropy is present but not accounted for. In this paper, we derive relationships between the stacking parameters and anisotropic wavefront attributes that allow us to apply the common reflection surface type operator to 3-D media with arbitrary anisotropy for the zero-offset and finite-offset configurations including converted waves. The operator itself is expressed in terms of wavefront attributes that are measured in the acquisition surface, that is, no model assumptions are made. Numerical results confirm that the accuracy of the new anisotropic operator is of the same magnitude as that of its isotropic counterpart
Exciton Spin Dynamics in Semiconductor Quantum Wells
In this paper we will review Exciton Spin Dynamics in Semiconductor Quantum
Wells. The spin properties of excitons in nanostructures are determined by
their fine structure. We will mainly focus in this review on GaAs and InGaAs
quantum wells which are model systems.Comment: 55 pages, 27 figure
Antikinetoplastid SAR study in 3-nitroimidazopyridine series: identification of a novel non-genotoxic and potent anti-T. b. brucei hit-compound with improved pharmacokinetic properties
To study the antikinetoplastid 3-nitroimidazo[1,2-a]pyridine pharmacophore, a structure-activity relationship study was conducted through the synthesis of 26 original derivatives and their in vitro evaluation on both Leishmania spp and Trypanosoma brucei brucei. This SAR study showed that the antitrypanosomal pharmacophore was less restrictive than the antileishmanial one and highlighted positions 2, 6 and 8 of the imidazopyridine ring as key modulation points. None of the synthesized compounds allowed improvement in antileishmanial activity, compared to previous hit molecules in the series. Nevertheless, compound 8, the best antitrypanosomal molecule in this series (EC50 = 17 nM, SI = 2650 & E° = -0.6 V), was not only more active than all reference drugs and previous hit molecules in the series but also displayed improved aqueous solubility and better in vitro pharmacokinetic characteristics: good microsomal stability (T1/2 > 40 min), moderate albumin binding (77%) and moderate permeability across the blood brain barrier according to a PAMPA assay. Moreover, both micronucleus and comet assays showed that nitroaromatic molecule 8 was not genotoxic in vitro. It was evidenced that bioactivation of molecule 8 was operated by T. b. brucei type 1 nitroreductase, in the same manner as fexinidazole. Finally, a mouse pharmacokinetic study showed that 8 displayed good systemic exposure after both single and repeated oral administrations at 100 mg/kg (NOAEL) and satisfying plasmatic half-life (T1/2 = 7.7 h). Thus, molecule 8 appears as a good candidate for initiating a hit to lead drug discovery program
Two distinct patterns of treatment resistance:clinical predictors of treatment resistance in first-episode schizophrenia spectrum psychoses
BACKGROUND: Clozapine remains the only evidence-based antipsychotic for treatment-resistant schizophrenia (TRS). The ability to predict which patients with their first onset of schizophrenia would subsequently meet criteria for treatment resistance (TR) could help to diminish the severe functional disability which may ensue if TR is not recognized and correctly treated.
METHOD: This is a 5-year longitudinal assessment of clinical outcomes in a cohort of 246 first-episode schizophrenia spectrum patients recruited as part of the NIHR Genetics and Psychosis (GAP) study conducted in South London from 2005 to 2010. We examined the relationship between baseline demographic and clinical measures and the emergence of TR. TR status was determined from a review of electronic case records. We assessed for associations with early-, and late-onset TR, and non-TR, and differences between those TR patients treated with clozapine and those who were not.
RESULTS: Seventy per cent (n = 56) of TR patients, and 23% of the total study population (n = 246) were treatment resistant from illness onset. Those who met criteria for TR during the first 5 years of illness were more likely to have an early age of first contact for psychosis (years) [odds ratio (OR) 2.49, 95% confidence interval (CI) 1.25-4.94] compared to those with non-TR. The relationship between an early age of first contact (years) and TR was significant in patients of Black ethnicity (OR 3.71, 95% CI 1.44-9.56); and patients of male gender (OR 3.13 95% CI 1.35-7.23).
CONCLUSIONS: For the majority of the TR group, antipsychotic TR is present from illness onset, necessitating increased consideration for the earlier use of clozapine
Curvatures and inhomogeneities: An improved common-reflection-surface approach
Multiparameter stacking is an important tool to obtain a first reliable time image of the subsurface. In addition, it provides wavefield attributes, which form the basis for many important applications. The quality of the image and the attribute estimates relies heavily on the accuracy of the traveltime moveout description. The commonly used hyperbolic common-reflection-surface (CRS) operator reduces to the NMO hyperbola in the common-midpoint gather. Its accuracy, however, depends on the curvature of the reflector under consideration. The conventional multifocusing (MF) operator, a time-shifted double-square-root expression, leads to good results for high reflector curvatures and moderate inhomogeneities of the overburden. We used a new implicit CRS formulation that combines the robustness of CRS regarding heterogeneities with the high sensitivity to curvature of the MF approach. It assumes reflectors to be locally circular and can be applied in an iterative fashion. For simple but common acquisition and subsurface configurations, the new traveltime expression reduces to familiar formulas. Quantitative studies revealed that the new operator performs equally well over the full range of curvatures even in the presence of strong heterogeneities, while providing higher accuracy than the conventional CRS and MF methods. In addition, its application resulted in more reliable attribute estimates and an improved time-migrated section. Comparison of stacking and migration results for the complex synthetic Sigsbee 2a data set confirmed the potential of the suggested approach
Curvatures and inhomogeneities: An improved common-reflection-surface approach
Multiparameter stacking is an important tool to obtain a first reliable time image of the subsurface. In addition, it provides wavefield attributes, which form the basis for many important applications. The quality of the image and the attribute estimates relies heavily on the accuracy of the traveltime moveout description. The commonly used hyperbolic common-reflection-surface (CRS) operator reduces to the NMO hyperbola in the common-midpoint gather. Its accuracy, however, depends on the curvature of the reflector under consideration. The conventional multifocusing (MF) operator, a time-shifted double-square-root expression, leads to good results for high reflector curvatures and moderate inhomogeneities of the overburden. We used a new implicit CRS formulation that combines the robustness of CRS regarding heterogeneities with the high sensitivity to curvature of the MF approach. It assumes reflectors to be locally circular and can be applied in an iterative fashion. For simple but common acquisition and subsurface configurations, the new traveltime expression reduces to familiar formulas. Quantitative studies revealed that the new operator performs equally well over the full range of curvatures even in the presence of strong heterogeneities, while providing higher accuracy than the conventional CRS and MF methods. In addition, its application resulted in more reliable attribute estimates and an improved time-migrated section. Comparison of stacking and migration results for the complex synthetic Sigsbee 2a data set confirmed the potential of the suggested approach
- …