87 research outputs found

    Electroencephalogram paroxysmal theta characterizes cataplexy in mice and children

    Get PDF
    Astute control of brain activity states is critical for adaptive behaviours and survival. In mammals and birds, electroencephalographic recordings reveal alternating states of wakefulness, slow wave sleep and paradoxical sleep (or rapid eye movement sleep). This control is profoundly impaired in narcolepsy with cataplexy, a disease resulting from the loss of orexin/hypocretin neurotransmitter signalling in the brain. Narcolepsy with cataplexy is characterized by irresistible bouts of sleep during the day, sleep fragmentation during the night and episodes of cataplexy, a sudden loss of muscle tone while awake and experiencing emotions. The neural mechanisms underlying cataplexy are unknown, but commonly thought to involve those of rapid eye movement-sleep atonia, and cataplexy typically is considered as a rapid eye movement sleep disorder. Here we reassess cataplexy in hypocretin (Hcrt, also known as orexin) gene knockout mice. Using a novel video/electroencephalogram double-blind scoring method, we show that cataplexy is not a state per se, as believed previously, but a dynamic, multi-phased process involving a reproducible progression of states. A knockout-specific state and a stereotypical paroxysmal event were introduced to account for signals and electroencephalogram spectral characteristics not seen in wild-type littermates. Cataplexy almost invariably started with a brief phase of wake-like electroencephalogram, followed by a phase featuring high-amplitude irregular theta oscillations, defining an activity profile distinct from paradoxical sleep, referred to as cataplexy-associated state and in the course of which 1.5-2 s high-amplitude, highly regular, hypersynchronous paroxysmal theta bursts (∼7 Hz) occurred. In contrast to cataplexy onset, exit from cataplexy did not show a predictable sequence of activities. Altogether, these data contradict the hypothesis that cataplexy is a state similar to paradoxical sleep, even if long cataplexies may evolve into paradoxical sleep. Although not exclusive to overt cataplexy, cataplexy-associated state and hypersynchronous paroxysmal theta activities are highly enriched during cataplexy in hypocretin/orexin knockout mice. Their occurrence in an independent narcolepsy mouse model, the orexin/ataxin 3 transgenic mouse, undergoing loss of orexin neurons, was confirmed. Importantly, we document for the first time similar paroxysmal theta hypersynchronies (∼4 Hz) during cataplexy in narcoleptic children. Lastly, we show by deep recordings in mice that the cataplexy-associated state and hypersynchronous paroxysmal theta activities are independent of hippocampal theta and involve the frontal cortex. Cataplexy hypersynchronous paroxysmal theta bursts may represent medial prefrontal activity, associated in humans and rodents with reward-driven motor impulse, planning and conflict monitorin

    The Brain Correlates of Laugh and Cataplexy in Childhood Narcolepsy

    Get PDF
    The brain suprapontine mechanisms associated with human cataplexy have not been clarified. Animal data suggest that the amygdala and the ventromedial prefrontal cortex are key regions in promoting emotion-induced cataplectic attacks. Twenty-one drug-naive children/adolescent (13 males, mean age 11 years) with recent onset of narcolepsy type 1 (NT1) were studied with fMRI while viewing funny videos using a "naturalistic" paradigm. fMRI data were acquired synchronously with EEG, mylohyoid muscle activity, and the video of the patient's face. Whole-brain hemodynamic correlates of (1) a sign of fun and amusement (laughter) and of (2) cataplexy were analyzed and compared. Correlations analyses between these contrasts and disease-related variables and behavioral findings were performed

    Sleep Bruxism and Orofacial Pain in Patients with Sleep Disorders: A Controlled Cohort Study

    Get PDF
    Background: The gold standard for the diagnosis of sleep bruxism (SB) is laboratory polysomnography (L-PSG) recording. However, many clinicians still define SB using patients' self-assessment and/or clinical tooth wear (TW). The purpose of this cross-sectional controlled study was to compare the prevalence of TW, head-neck muscles sensitivity and Temporomandibular Disorders (TMD) between SB and non-SB patients diagnosed with L-PSG in a cohort of patient with sleep disorders (SD). Methods: 102 adult subjects with suspected SD underwent L-PSG recording to assess the presence of sleep disorder and SB. TW was clinically analyzed using TWES 2.0. The pressure pain threshold (PPT) of masticatory muscles were assessed using a Fisher algometer. Diagnostic criteria for TMD (DC/TMD) were used to evaluate the presence of TMD. SB self-assessment questionnaires were administered. TWES score, PPT, TMD prevalence and questionnaire results were compared between SB and non-SB patients. Results: 22 SB patients and 66 non-SB patients with SD were included. No significant differences emerged between groups in regards to TW, the PPT values, or SB's self-assessment questionnaires as well the prevalence of TMD. Conclusion: in a SD population, TW is not pathognomonic of active SB and SB self-assessment is not reliable. There seems to be no correlation between SB, TMD and head/neck muscle sensitivity

    Non-24-hour sleep-wake rhythm disorder and melatonin secretion impairment in a patient with pineal cyst

    Get PDF
    We report the case of a 14-year-old girl with a wide non-compressive pineal cyst, associated with the inability to control her sleep-wake schedule. Actigraphic monitoring showed a 24-hour free-running disorder (tau 26.96 hours). A 24-hour serum melatonin curve assay, with concomitant video-polysomnographic and body-core temperature monitoring, was performed. Melatonin curve showed a blunted nocturnal peak, lower total quantity of melatonin, and prolonged melatonin secretion in the morning, with normal temperature profile and sleep parameters. Treatment with melatonin up to 14 mg at bedtime was initiated with complete realignment of the sleep-wake rhythm (tau 23.93 hours). The role of the pineal cyst in the aforementioned alteration of melatonin secretion and free-running disorder remains controversial, but our case supports the utility of monitoring sleep/wake, temperature, and melatonin rhythms in the diagnostic work-up of pineal cysts associated with free-running disorder

    The spectrum of REM sleep-related episodes in children with type 1 narcolepsy

    Get PDF
    Type 1 narcolepsy is a central hypersomnia due to the loss of hypocretin-producing neurons and characterized by cataplexy, excessive daytime sleepiness, sleep paralysis, hypnagogic hallucinations and disturbed nocturnal sleep. In children, close to the disease onset, type 1 narcolepsy has peculiar clinical features with severe cataplexy and a complex admixture of movement disorders occurring while awake. Motor dyscontrol during sleep has never been systematically investigated. Suspecting that abnormal motor control might affect also sleep, we systematically analysed motor events recorded by means of video polysomnography in 40 children with type 1 narcolepsy (20 females; mean age 11.8 \ub1 2.6 years) and compared these data with those recorded in 22 age- and sex-matched healthy controls. Motor events were classified as elementary movements, if brief and non-purposeful and complex behaviours, if simulating purposeful behaviours. Complex behaviours occurring during REM sleep were further classified as 'classically-defined' and 'pantomime-like' REM sleep behaviour disorder episodes, based on their duration and on their pattern (i.e. brief and vivid-energetic in the first case, longer and with subcontinuous gesturing mimicking daily life activity in the second case). Elementary movements emerging either from non-REM or REM sleep were present in both groups, even if those emerging from REM sleep were more numerous in the group of patients. Conversely, complex behaviours could be detected only in children with type 1 narcolepsy and were observed in 13 patients, with six having 'classically-defined' REM sleep behaviour disorder episodes and seven having 'pantomime-like' REM sleep behaviour disorder episodes. Complex behaviours during REM sleep tended to recur in a stereotyped fashion for several times during the night, up to be almost continuous. Patients displaying a more severe motor dyscontrol during REM sleep had also more severe motor disorder during daytime (i.e. status cataplecticus) and more complaints of disrupted nocturnal sleep and of excessive daytime sleepiness. The neurophysiological hallmark of this severe motor dyscontrol during REM sleep was a decreased atonia index. The present study reports for the first time the occurrence of a severe and peculiar motor disorder during REM sleep in paediatric type 1 narcolepsy and confirms the presence of a severe motor dyscontrol in these patients, emerging not only from wakefulness (i.e. status cataplecticus), but also from sleep (i.e. complex behaviours during REM sleep). This is probably related to the acute imbalance of the hypocretinergic system, which physiologically acts by promoting movements during wakefulness and suppressing them during sleep

    Modulation of the Muscle Activity During Sleep in Cervical Dystonia

    Get PDF
    Introduction: Impaired sleep has been reported as an important nonmotor feature in dystonia, but so far, self-reported complaints have never been compared with nocturnal video-polysomnographic (PSG) recording, which is the gold standard to assess sleep-related disorders. Methods: Twenty patients with idiopathic isolated cervical dystonia and 22 healthy controls (HC) underwent extensive clinical investigations, neurological examination, and questionnaire screening for excessive daytime sleepiness and sleep-related disorders. A full-night video PSG was performed in both patients and HC. An ad hoc montage, adding electromyographic leads over the muscle affected with dystonia, was used. Results: When compared to controls, patients showed significantly increased pathological values on the scale assessing self-reported complaints of impaired nocturnal sleep. Higher scores of impaired nocturnal sleep did not correlate with any clinical descriptors but for a weak correlation with higher scores on the scale for depression. On video-PSG, patients had significantly affected sleep architecture (with decreased sleep efficiency and increased sleep latency). Activity over cervical muscles disappears during all the sleep stages, reaching significantly decreased values when compared to controls both in nonrapid eye movements and rapid eye movements sleep. Conclusions: Patients with cervical dystonia reported poor sleep quality and showed impaired sleep architecture. These features however cannot be related to the persistence of muscle activity over the cervical muscles, which disappears in all the sleep stages, reaching significantly decreased values when compared to HC

    Clinical and polysomnographic course of childhood narcolepsy with cataplexy.

    Get PDF
    Our aim was to investigate the natural evolution of cataplexy and polysomnographic features in untreated children with narcolepsy with cataplexy. To this end, clinical, polysomnographic, and cataplexy-video assessments were performed at diagnosis (mean age of 10 ± 3 and disease duration of 1 ± 1 years) and after a median follow-up of 3 years from symptom onset (mean age of 12 ± 4 years) in 21 children with narcolepsy with cataplexy and hypocretin 1 deficiency (tested in 19 subjects). Video assessment was also performed in two control groups matched for age and sex at first evaluation and follow-up and was blindly scored for presence of hypotonic (negative) and active movements. Patients' data at diagnosis and at follow-up were contrasted, compared with controls, and related with age and disease duration. At diagnosis children with narcolepsy with cataplexy showed an increase of sleep time during the 24 h; at follow-up sleep time and nocturnal sleep latency shortened, in the absence of other polysomnographic or clinical (including body mass index) changes. Hypotonic phenomena and selected facial movements decreased over time and, tested against disease duration and age, appeared as age-dependent. At onset, childhood narcolepsy with cataplexy is characterized by an abrupt increase of total sleep over the 24 h, generalized hypotonia and motor overactivity. With time, the picture of cataplexy evolves into classic presentation (i.e., brief muscle weakness episodes triggered by emotions), whereas total sleep time across the 24 h decreases, returning to more age-appropriate levels

    Decreased sleep stage transition pattern complexity in narcolepsy type 1

    No full text
    Objective To analyze the complexity of the nocturnal sleep stage sequence in central disorders of hypersomnolence (CDH), with the hypothesis that narcolepsy type 1 (NT1) might exhibit distinctive sleep stage sequence organization and complexity. Methods Seventy-nine NT1 patients, 22 narcolepsy type 2 (NT2), 22 idiopathic hypersomnia (IH), and 52 patients with subjective hypersomnolence (sHS) were recruited and their nocturnal sleep was polysomnographically recorded and scored. Group between-stage transition probability matrices were obtained and compared. Results Patients with NT1 differed significantly from all the other patient groups, the latter, in turn, were not different between each other. The individual probability of the R-to-N2 transition was found to be the parameter showing the difference of highest significance between the groups (lowest in NT1) and classified patients with or without NT1 with an accuracy of 78.9% (sensitivity 78.5% and specificity 79.2%), by applying a cut-off value of 0.15. Conclusions The main result of this study is that the structure of the sleep stage transition pattern of hypocretin-deficient NT1 patients is significantly different from that of other forms of CDH and sHS, with normal hypocretin levels. Significance The lower probability of R-to-N2 transition occurrence in NT1 appears to be a reliable polysomnographic feature with potential application at the individual level, for supportive diagnostic purposes

    Actigraphic assessment of sleep/wake behavior in central disorders of hypersomnolence

    No full text
    To evaluate the reliability of actigraphy to distinguish the features of estimated daytime and nighttime sleep between patients with central disorders of hypersomnolence and healthy controls.Thirty-nine drug-na\uefve patients with Narcolepsy Type 1, twenty-four drug-na\uefve patients with Idiopathic Hypersomnia, and thirty age- and sex- matched healthy controls underwent seven days of actigraphic and self-report monitoring of sleep/wake behavior. The following variables were examined: estimated time in bed (eTIB), estimated total sleep time, estimated sleep latency (eSOL), estimated sleep efficiency, estimated wake after sleep onset, number of estimated awakenings (eAwk), number of estimated awakenings longer than 5 minutes, estimated sleep motor activity (eSMA), number of estimated naps, mean duration of the longest estimated nap (eNapD), and daytime motor activity.All actigraphic parameters significantly differentiated the three groups, except eTIB and eSOL. A discriminant score computed combining actigraphic parameters from nighttime (eSMA, eAwk) and daytime (eNapD) periods showed a wide area under the curve (0.935) and a good balance between positive (95%) and negative predictive (87%) values in Narcolepsy Type 1 cases.Actigraphy provided a reliable objective measurement of sleep quality and daytime napping behavior able to distinguish central disorders of hypersomnolence and in particular Narcolepsy Type 1. The nycthemeral profile, combined with a careful clinical evaluation, may be an ecological information, useful to track disease course
    corecore