239 research outputs found

    Semiquantitative interpretation of anticardiolipin and antiβ2glycoprotein I antibodies measured with various analytical platforms: communication from the ISTH SSC subcommittee on Lupus Anticoagulant/Antiphospholipid antibodies

    Get PDF
    Background Antiβ2glycoprotein I (aβ2GPI) and anticardiolipin (aCL) IgG/IgM show differences in positive/negative agreement and titers between solid phase platforms. Method specific semiquantitative categorization of titers could improve and harmonize the interpretation across platforms. Aim To evaluate the traditionally 40/80 units thresholds used for aCL and aβ2GPI for categorization into moderate/high positivity with different analytical systems, and to compare with alternative thresholds. Material and methods aCL and aβ2GPI thresholds were calculated for two automated systems (chemiluminescent immunoassay (CLIA) and multiplex flow immunoassay (MFI)) by ROC-curve analysis on 1108 patient samples, including patients with and without APS, and confirmed on a second population (n=279). Alternatively, regression analysis on diluted standard material was applied to identify thresholds. Thresholds were compared to 40/80 threshold measured by an enzyme linked immunosorbent assay (ELISA). Additionally, likelihood ratios (LR) were calculated. Results Threshold levels of 40/80 units show poor agreement between ELISA and automated platforms for classification into low/moderate/high positivity, especially for aCL/aβ2GPI IgG. Agreement for semiquantitative interpretation of aPL IgG between ELISA and CLIA/MFI improves with alternative thresholds. LR for aPL IgG increase for thrombotic and obstetric APS based on 40/80 thresholds for ELISA and adapted thresholds for the other systems, but not for IgM. Conclusion Use of 40/80 units as medium/high thresholds is acceptable for aCL/aβ2GPI IgG ELISA, but not for CLIA and MFI. Alternative semiquantitative thresholds for non-ELISA platforms can be determined by a clinical approach or by using monoclonal antibodies. Semiquantitative reporting of aPL IgM has less impact on increasing probability for APS

    Patient Preferences for Lung Cancer Treatment: A Qualitative Study Protocol Among Advanced Lung Cancer Patients

    Get PDF
    Introduction: Lung cancer is the deadliest and most prevalent cancer worldwide. Lung cancer treatments have different characteristics and are associated with a range of benefits and side effects for patients. Such differences may raise uncertainty among drug developers, regulators, payers, and clinicians regarding the value of these treatment effects to patients. The value of conducting patient preference studies (using qualitative and/or quantitative methods) for benefits and side effects of different treatment options has been recognized by healthcare stakeholders, such as drug developers, regulators, health technology assessment bodies, and clinicians. However, evidence-based guidelines on how and when to conduct and use these studies in drug decision-making are lacking. As part of the Innovative Medicines Initiative PREFER project, we developed a protocol for a qualitative study that aims to understand which treatment characteristics are most important to lung cancer patients and to develop attributes and levels for inclusion in a subsequent quantitative preference survey. Methods: The study protocol specifies a four-phased approach: (i) a scoping literature review of published literature, (ii) four focus group discussions with stage III and IV Non-Small Cell Lung Cancer patients, (iii) two nominal group discussions with stage III and IV Non-Small Cell Lung Cancer patients, and (iv) multi-stakeholder discussions involving clinicians and preference experts. Discussion: This protocol outlines methodological and practical steps as to how qualitative research can be applied to identify and develop attributes and levels for inclusion in patient preference studies aiming to inform decisions across the drug life cycle. The results of this study are intended to inform a subsequent quantitative preference survey that assesses patient trade-offs regarding lung cancer treatment options. This protocol may assist researchers, drug developers, and decision-makers in designing qualitative studies to understand which treatment aspects are most valued by patients in drug development, regulation, and reimbursement

    Interfacial Molecular Imprinting in Nanoparticle-Stabilized Emulsions

    Get PDF
    A new interfacial nano and molecular imprinting approach is developed to prepare spherical molecularly imprinted polymers with well-controlled hierarchical structures. This method is based on Pickering emulsion polymerization using template-modified colloidal particles. The interfacial imprinting is carried out in particle-stabilized oil-in-water emulsions, where the molecular template is presented on the surface of silica nanoparticles during the polymerization of the monomer phase. After polymerization, the template-modified silica nanoparticles are removed from the new spherical particles to leave tiny indentations decorated with molecularly imprinted sites. The imprinted microspheres prepared using the new interfacial nano and molecular imprinting have very interesting features: a well-controlled hierarchical structure composed of large pores decorated with easily accessible molecular binding sites, group selectivity toward a series of chemicals having a common structural moiety (epitopes), and a hydrophilic surface that enables the MIPs to be used under aqueous conditions

    Patient Preferences for Lung Cancer Treatments: A Study Protocol for a Preference Survey Using Discrete Choice Experiment and Swing Weighting

    Get PDF
    Background: Advanced treatment options for non-small cell lung cancer (NSCLC) consist of immunotherapy, chemotherapy, or a combination of both. Decisions surrounding NSCLC can be considered as preference-sensitive because multiple treatments exist that vary in terms of mode of administration, treatment schedules, and benefit–risk profiles. As part of the IMI PREFER project, we developed a protocol for an online preference survey for NSCLC patients exploring differences in preferences according to patient characteristics (preference heterogeneity). Moreover, this study will evaluate and compare the use of two different preference elicitation methods, the discrete choice experiment (DCE) and the swing weighting (SW) task. Finally, the study explores how demographic (i.e., age, gender, and educational level) and clinical (i.e., cancer stage and line of treatment) information, health literacy, health locus of control, and quality of life may influence or explain patient preferences and the usefulness of a digital interactive tool in providing information on preference elicitation tasks according to patients. Methods: An online survey will be implemented with the aim to recruit 510 NSCLC patients in Belgium and Italy. Participants will be randomized 50:50 to first receive either the DCE or the SW. The survey will also collect information on participants' disease-related status, health locus of control, health literacy, quality of life, and perception of the educational tool. Discussion: This protocol outlines methodological and practical steps to quantitatively elicit and study patient preferences for NSCLC treatment alternatives. Results from this study will increase the understanding of which treatment aspects are most valued by NSCLC patients to inform decision-making in drug development, regulatory approval, and reimbursement. Methodologically, the comparison between the DCE and the SW task will be valuable to gain information on how these preference methods perform against each other in eliciting patient preferences. Overall, this protocol may assist researchers, drug developers, and decision-makers in designing quantitative patient preferences into decision-making along the medical product life cycle
    corecore