179 research outputs found

    The role of electron-hole recombination in organic magnetoresistance

    Full text link
    Magneto-electrical measurements were performed on diodes and bulk heterojunction solar cells (BHSCs) to clarify the role of formation of coulombically bound electron-hole (e-h) pairs on the magnetoresistance (MR) response in organic thin film devices. BHSCs are suitable model systems because they effectively quench excitons but the probability of forming e-h pairs in them can be tuned over orders of magnitude by the choice of material and solvent in the blend. We have systematically varied the e-h recombination coefficients, which are directly proportional to the probability for the charge carriers to meet in space, and found that a reduced probability of electrons and holes meeting in space lead to disappearance of the MR. Our results clearly show that MR is a direct consequence of e-h pair formation. We also found that the MR line shape follows a power law-dependence of B0.5 at higher fields

    Low-dimensional hybrid perovskites containing an organic cation with an extended conjugated system : tuning the excitonic absorption features

    No full text
    Low-dimensional hybrid perovskites are receiving increased attention. One of the advantages of the low-dimensional hybrids over their 3D counterparts is their greater structural flexibility towards the incorporation of bigger, more complex, organic cations. In this communication, we introduce a pyrene derivative as an organic cation containing an extended pi-system for use in a variety of low-dimensional hybrids. We show that materials with different excitonic absorption features can be obtained by tuning the iodide/lead ratio in the precursor solutions, using the same pyrene cation. In this way, hybrids with optical characteristics corresponding to 2D, 1D and 0D hybrid perovskites are obtained. The formation and thermal stability of the different hybrids is analysed and compared

    Benzo[1,2-b:4,5-b']dithiophene as a weak donor component for push-pull materials displaying thermally activated delayed fluorescence or room temperature phosphorescence

    Get PDF
    In the search for high-performance donor-acceptor type organic compounds displaying thermally activated delayed fluorescence (TADF), triisopropylsilyl-protected benzo[1,2-b:4,5-b']dithiophene (BDT-TIPS) is presented as a novel donor component in combination with two known acceptors: dimethyl-9H-thioxanthenedioxide (TXO2) and dibenzo[a,c]phenazinedicarbonitrile (CNQxP). For a broader comparison, the same acceptors are also combined with the well-studied 9,9-dimethyl-9,10-dihydroacridine (DMAC) donor. Optimized BDT-TIPS-containing structures show calculated dihedral angles of around 50° and well-separated highest occupied and lowest unoccupied molecular orbitals, although varying singlet-triplet energy gaps are observed experimentally. By changing the acceptor moiety and the resulting ordering of excited states, room temperature phosphorescence (RTP) attributed to localized BDT-TIPS emission is observed for TXO2-BDT-TIPS, whereas CNQxP-BDT-TIPS affords a combination of TADF and triplet-triplet annihilation (TTA) delayed emission. In contrast, strong and pure TADF is well-known for TXO2-DMAC, whereas CNQxP-DMAC shows a mixture of TADF and TTA at very long timescales. Overall, BDT-TIPS represents an alternative low-strength donor component for push-pull type TADF emitters that is also able to induce RTP properties

    Facile synthesis of well-defined MDMO-PPV containing (tri)block-copolymers via controlled radical polymerization and CuAAC conjugation

    Get PDF
    A systematic investigation into the chain transfer polymerization of the so-called radical precursor polymerization of poly(p-phenylene vinylene) (PPV) materials is presented. Polymerizations are characterized by systematic variation of chain transfer agent (CTA) concentration and reaction temperature. For the chain transfer constant, a negative activation energy of −12.8 kJ·mol−1 was deduced. Good control over molecular weight is achieved for both the sulfinyl and the dithiocarbamate route (DTC). PPVs with molecular weights ranging from thousands to ten thousands g·mol−1 were obtained. To allow for a meaningful analysis of the CTA influence, Mark–Houwink–Kuhn–Sakurada (MHKS) parameters were determined for conjugated MDMO-PPV ([2-methoxy-5-(3',7'-dimethyloctyloxy)]-1,4-phenylenevinylene) to α = 0.809 and k = 0.00002 mL·g−1. Further, high-endgroup fidelity of the CBr4-derived PPVs was proven via chain extension experiments. MDMO-PPV-Br was successfully used as macroinitiator in atom transfer radical polymerization (ATRP) with acrylates and styrene. A more polar PPV counterpart was chain extended by an acrylate in single-electron transfer living radical polymerization (SET-LRP). In a last step, copper-catalyzed azide alkyne cycloaddition (CuAAC) was used to synthesize block copolymer structures. Direct azidation followed by macromolecular conjugation showed only partial success, while the successive chain extension via ATRP followed by CuAAC afforded triblock copolymers of the poly(p-phenylene vinylene)-block-poly(tert-butyl acrylate)-block-poly(ethylene glycol) (PPV-b-PtBuA-b-PEG)

    Difluorodithieno[3,2-a:2′,3′-c]phenazine as a strong acceptor for materials displaying thermally activated delayed fluorescence or room temperature phosphorescence

    Get PDF
    A novel strong electron-acceptor unit, 9,10-difluorodithieno[3,2-a:2′,3′-c]phenazine (DTPz), is synthesized and applied in the design of two donor-acceptor type emitters displaying long-lived delayed emission. Using either 9,9-dimethyl-9,10-dihydroacridine (DMAC) or triisopropyl-substituted benzo[1,2-b:4,5-b']dithiophene (BDT-TIPS) as the donor component, push-pull type chromophores exhibiting charge-transfer emission are obtained and found to afford either thermally activated delayed fluorescence (TADF) for DMAC or room temperature phosphorescence (RTP) for BDT-TIPS

    Synthesis and spectroscopic properties of a novel perylenediimide derivative

    Get PDF
    A novel symmetric 3,4,9,10-perylenetetracarboxylic acid derivative (PDI1) dye based on thiophene donor group was synthesized and characterized by FT-IR and 1H NMR. Cyclic Voltammetry analysis is performed to determine the energy levels of the perylene derivative. Optical characteristics were determined by visible absorption and fluorescence emission spectra. Spectral behavior and fluorescence quantum yield of PDI1 have been measured in different solvents. The dye exhibits high fluorescence quantum yield ( Φf: 0.94-0.99). But the quantum yield PDI1 is very low in the n-butanol solution ( Φf: 0.12). The photophysical properties have important implications for use in a variety of electroactive and photovoltaic applications. A photovoltaic device was fabricated with PDI1 as transporting material. The conversion efficiency for DSSC sensitized by PDI1 is 0.0065%. PDI1 exhibits electrochromic behavior by switching between neutral (red) and oxidized (blue) states. Electron transfer capacity of PDI to the TiO2 was investigated by incorporation of dye as sensitizer in dye sensitized solar cell (DSSC). Soluble dye molecules are very important to prepare dye sensitized solar cell. Solubility was increased with thiophene group
    • …
    corecore