204 research outputs found

    Balanced task allocation by partitioning the multiple traveling salesperson problem

    Get PDF
    Task assignment and routing are tightly coupled problems for teams of mobile agents. To fairly balance the workload, each agent should be assigned a set of tasks which take a similar amount of time to complete. The completion time depends on the time needed to travel between tasks which depends on the order of tasks. We formulate the task assignment problem as the minimum Hamiltonian partition problem (MHPP) form agents, which is equivalent to the minmax multiple traveling salesperson problem (m-TSP). While the MHPP’s cost function depends on the order of tasks, its solutions are similar to solutions of the average Hamiltonian partition problem (AHPP) whose cost function is order-invariant. We prove that the AHPP is NP-hard and present an effective heuristic, AHP, for solving it. AHP improves a partitions of a graph using a series of transfer and swap operations which are guaranteed to improve the solution’s quality. The solution generated by AHP is used as an initial partition for an algorithm, AHP-mTSP, which solves the combined task assignment and routing problems to near optimality. For n tasks and m agents, each iteration of AHP is O(n2) and AHP-mTSP has an average run-time that scales with n2.11m0.33. Compared to state-of-the-art approaches, our approach found approximately 10% better solutions for large problems in a similar run-time

    Re-establishing communication in teams of mobile robots

    Get PDF
    As communication is important for cooperation, teams of mobile robots need a way to re-establish a wireless connection if they get separated. We develop a method for mobile robots to maintain a belief of each other's positions using locally available information. They can use their belief to plan paths with high probabilities of reconnection. This approach also works for subteams cooperatively searching for a robot or group of robots that they would like to reconnect with. The problem is formulated as a constrained optimization problem which is solved using a branch-and-bound approach. We present simulation results showing the effectiveness of this strategy at reconnecting teams of up to five robots and compare the results to two other strategies

    Turn-minimizing multirobot coverage

    Get PDF
    Document Sections I. Introduction II. Partitioning the Environment III. Combining Ranks Into Paths IV. Results V. Conclusions Authors Figures References Keywords Metrics Abstract: Multirobot coverage is the problem of planning paths for several identical robots such that the combined regions traced out by the robots completely cover their environment. We consider the problem of multirobot coverage with the objective of minimizing the mission time, which depends on the number of turns taken by the robots. To solve this problem, we first partition the environment into ranks which are long thin rectangles the width of the robot's coverage tool. Our novel partitioning heuristic produces a set of ranks which minimizes the number of turns. Next, we solve a variant of the multiple travelling salesperson problem (m-TSP) on the set of ranks to minimize the robots' mission time. The resulting coverage plan is guaranteed to cover the entire environment. We present coverage plans for a robotic vacuum using real maps of 25 indoor environments and compare the solutions to paths planned without the objective of minimizing turns. Turn minimization reduced the number of turns by 6.7% and coverage time by 3.8% on average for teams of 1-5 robots

    Connecting

    Get PDF
    Christy I. Wenger, The Emotional Labor of Our Work W. Keith Duffy, Interdisciplinary Dangers: A Small Caveat Sheila Kennedy & Jen Consilio, One Mindful Step Carl Vandermeulen, The Way to the Falls Robert Randolph, A Good Rai

    Modular fluidic propulsion robots

    Get PDF
    We propose a novel concept for modular robots, termed modular fluidic propulsion (MFP), which promises to combine effective propulsion, a large reconfiguration space, and a scalable design. MFP robots are modular fluid networks. To propel, they route fluid through themselves. In this article, both hydraulic and pneumatic implementations are considered. The robots move towards a goal by way of a decentralized controller that runs independently on each module face, uses two bits of sensory information and requires neither run-time memory, nor communication. We prove that 2-D MFP robots reach the goal when of orthogonally convex shape, or reach a morphology-dependent distance from it when of arbitrary shape. We present a 2-D hydraulic MFP prototype and show, experimentally, that it succeeds in reaching the goal in at least 90% of trials, and that 71% less energy is expended when modules can communicate. Moreover, in simulations with 3-D hydraulic MFP robots, the decentralized controller performs almost as well as a state-of-the-art and centralized controller. Given the simplicity of the hardware requirements, the MFP concept could pave the way for modular robots to be used at sub-centimeter-scale, where effective modular propulsion systems have not been demonstrated

    SHREC 2011: robust feature detection and description benchmark

    Full text link
    Feature-based approaches have recently become very popular in computer vision and image analysis applications, and are becoming a promising direction in shape retrieval. SHREC'11 robust feature detection and description benchmark simulates the feature detection and description stages of feature-based shape retrieval algorithms. The benchmark tests the performance of shape feature detectors and descriptors under a wide variety of transformations. The benchmark allows evaluating how algorithms cope with certain classes of transformations and strength of the transformations that can be dealt with. The present paper is a report of the SHREC'11 robust feature detection and description benchmark results.Comment: This is a full version of the SHREC'11 report published in 3DO

    Non-cytotoxic 1,2,3-triazole tethered fused heterocyclic ring derivatives display Tax protein inhibition and impair HTLV-1 infected cells

    Get PDF
    Human T cell lymphotropic virus type 1 (HTLV-1) is a human retrovirus that infects approximately 10–20 million people worldwide and causes an aggressive neoplasia (adult T-cell leukemia/lymphoma - ATL). Therapeutic approaches for the treatment of ATL have variable effectiveness and poor prognosis, thus requiring strategies to identify novel compounds with activity on infected cells. In this sense, we initially screened a small series of 25 1,2,3-triazole derivatives to discover cell proliferation inhibitors and apoptosis inducers in HTLV-1-infected T-cell line (MT-2) for further assessment of their effect on viral tax activity through inducible-tax reporter cell line (Jurkat LTR-GFP). Eight promising compounds (02, 05, 06, 13, 15, 21, 22 and 25) with activity ≥70% were initially selected, based on a suitable cell-based assay using resazurin reduction method, and evaluated towards cell cycle, apoptosis and Tax/GFP expression analyses through flow cytometry. Compound 02 induced S phase cell cycle arrest and compounds 05, 06, 22 and 25 promoted apoptosis. Remarkably, compounds 22 and 25 also reduced GFP expression in an inducible-tax reporter cell, which suggests an effect on Tax viral protein. More importantly, compounds 02, 22 and 25 were not cytotoxic in human hepatoma cell line (Huh-7). Therefore, the discovery of 3 active and non-cytotoxic compounds against HTLV-1-infected cells can potentially contribute, as an initial promising strategy, to the development process of new drugs against ATL

    PACE Technical Report Series, Volume 7: Ocean Color Instrument (OCI) Concept Design Studies

    Get PDF
    Extending OCI hyperspectral radiance measurements in the ultraviolet to 320 nm on the blue spectrograph enables quantitation of atmospheric total column ozone (O3) for use in ocean color atmospheric correction algorithms. The strong absorption by atmospheric ozone below 340 nm enables the quantification of total column ozone. Other applications are possible but were not investigated due to their exploratory nature and lower priority.The first step in the atmospheric correction processing, which converts top-of-the-atmosphere radiances to water-leaving radiances, is removal of the absorbance by atmospheric trace gases such as water vapor, oxygen, ozone and nitrogen dioxide. Details of the atmospheric correction process currently used by the Ocean Biology Processing Group (OBPG) and will be employed for PACE with appropriate modifications, are described by Mobley et al. [2016]. Atmospheric ozone absorbs within the visible to near-infrared spectrum between ~450 nm and 800nm and most appreciably between 530 nm and 650 nm, a spectral region critical for maintaining NASA's chlorophyll-a climate data record and for PACE algorithms planned to characterize phytoplankton community composition and other ocean color products.While satellite-based observations will likely be available during PACE's mission lifetime, the difference in acquisition time with PACE, the coarseness in their spatial resolution, and differences in viewing geometries will introduce significant levels of uncertainties in PACE ocean color data products

    IFN-Lambda (IFN-λ) Is Expressed in a Tissue-Dependent Fashion and Primarily Acts on Epithelial Cells In Vivo

    Get PDF
    Interferons (IFN) exert antiviral, immunomodulatory and cytostatic activities. IFN-α/β (type I IFN) and IFN-λ (type III IFN) bind distinct receptors, but regulate similar sets of genes and exhibit strikingly similar biological activities. We analyzed to what extent the IFN-α/β and IFN-λ systems overlap in vivo in terms of expression and response. We observed a certain degree of tissue specificity in the production of IFN-λ. In the brain, IFN-α/β was readily produced after infection with various RNA viruses, whereas expression of IFN-λ was low in this organ. In the liver, virus infection induced the expression of both IFN-α/β and IFN-λ genes. Plasmid electrotransfer-mediated in vivo expression of individual IFN genes allowed the tissue and cell specificities of the responses to systemic IFN-α/β and IFN-λ to be compared. The response to IFN-λ correlated with expression of the α subunit of the IFN-λ receptor (IL-28Rα). The IFN-λ response was prominent in the stomach, intestine and lungs, but very low in the central nervous system and spleen. At the cellular level, the response to IFN-λ in kidney and brain was restricted to epithelial cells. In contrast, the response to IFN-α/β was observed in various cell types in these organs, and was most prominent in endothelial cells. Thus, the IFN-λ system probably evolved to specifically protect epithelia. IFN-λ might contribute to the prevention of viral invasion through skin and mucosal surfaces
    • …
    corecore