
This is a repository copy of Turn-minimizing multirobot coverage.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/143336/

Version: Accepted Version

Proceedings Paper:
Vandermeulen, I., Gross, R. orcid.org/0000-0003-1826-1375 and Kolling, A. (2019)
Turn-minimizing multirobot coverage. In: 2019 International Conference on Robotics and
Automation (ICRA). 2019 International Conference on Robotics and Automation (ICRA),
20-24 May 2019, Montreal, Canada. IEEE . ISBN 9781538681763

https://doi.org/10.1109/ICRA.2019.8794002

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Turn-minimizing multirobot coverage

Isaac Vandermeulen1, Roderich Groß1, and Andreas Kolling2

Abstract— Multirobot coverage is the problem of planning
paths for several identical robots such that the combined regions
traced out by the robots completely cover their environment.
We consider the problem of multirobot coverage with the
objective of minimizing the mission time, which depends on the
number of turns taken by the robots. To solve this problem,
we first partition the environment into ranks which are long
thin rectangles the width of the robot’s coverage tool. Our
novel partitioning heuristic produces a set of ranks which
minimizes the number of turns. Next, we solve a variant of
the multiple travelling salesperson problem (m-TSP) on the set
of ranks to minimize the robots’ mission time. The resulting
coverage plan is guaranteed to cover the entire environment.
We present coverage plans for a robotic vacuum using real
maps of 25 indoor environments and compare the solutions
to paths planned without the objective of minimizing turns.
Turn minimization reduced the number of turns by 6.7% and
coverage time by 3.8% on average for teams of 1–5 robots.

I. INTRODUCTION

Minimizing path length is a common, but flawed, objective

in robotic path planning. It implicitly assumes the robot

moves at a constant speed and turns instantaneously which is

never true because real robots need to decelerate to turn. A

better objective is to minimize the travel time along the path

which depends on turns, acceleration, distance, and speed.

In this paper, we consider the minimizing of mission time

during multirobot coverage by minimizing the number of

turns made by the robots, as well as the distance. Fewer

turns also means that real robots get stuck less often and

have improved localization.

Coverage is the problem of planning a path such that

the robot’s tool passes over every point of its environment

at least once. Lawn mowing, painting, milling, vacuuming,

plowing, and surveillance are all coverage problems. In each

application, the robot’s tool, such as a rotating blade, paint

brush, or camera, traces out a two dimensional region as

it moves. The goal of coverage is to find a path such that

the tool covers the required area while minimizing some the

time needed to follow that path. In multirobot coverage, the

combined areas covered by several robots must equal the

required area.

A. Related work

Two basic coverage strategies are the contour-parallel

and direction-parallel paths [1]. In these strategies, the path

either follows the environment’s perimeter or moves back

1 Isaac Vandermeulen and Roderich Groß are with the Department of Au-
tomatic Control and Systems Engineering, University of Sheffield, Sheffield,
UK {iavandermeulen1,r.gross}@sheffield.ac.uk

2 Andreas Kolling is with iRobot, Pasadena, California, USA
akolling@irobot.com

Fig. 1. A coverage path with a single orientation (left) requires more turns
than one with two orientations (right). Both paths have the optimal length.

and forth in straight lines called ranks. For non-convex

polygons, these strategies are applied by first decomposing

the environment into convex regions using a method such

as the boustrophedon decomposition [2]. The order that the

cells are covered by contour- or direction-parallel motion

is determined by solving the travelling salesperson problem

(TSP). Like the TSP, the problems of finding the shortest

and time-minimal coverage paths are NP-hard [3].

Geometric decompositions form the basis of other cov-

erage approaches [4], [5]. Variants of the boustrophedon

decomposition [6], [7] are exact decompositions with large

cells. Approximate decompositions, such as Agmon et al.’s

minimum spanning tree (MST) approach [8], use a fine grid

of squares to guarantee a minimal path length with no repeat

coverage. Both boustrophedon- and MST-based approaches

create paths with many turns. Turns can be reduced by using

long straight ranks. In many environments, fewer ranks are

needed if multiple orientations are used (Figure 1).

Turn-minimizing coverage involves covering each cell in

a direction which minimizes the altitude of that cell [9].

Decompositions obtained by merging polygons in a finer

decomposition require exponential time to compute [9], [10].

A faster decomposition technique for turn minimization

[11], [12] is cutting a non-convex polygon at each of its

concave vertices. Turn-minimizing coverage has been applied

successfully to UAV applications [13], [14], [15]. We are not

aware of any existing multirobot coverage strategies for non-

convex polygons that use turn minimization.

Coverage time can be decreased by using more robots. If

the environment is first divided up into regions with equal

area, each robot can plan its coverage independently [16],

[17]. This approach can be made more robust by replanning

during the coverage mission to account for variable speeds

[18] or changes in the environment [19], [20]. Alternatively,

the robots can plan cooperatively using a modified boustro-

phedon decomposition [21] or MST-based strategy [22].

Fig. 2. Regions covered by robots with circular, square, irregular, and
straight line tools when moving along a straight path.

B. Contribution

In this paper, we present a new multirobot coverage

planner that explicitly considers turn minimization and works

for any polygonal environment. It minimizes turns using

a novel asymptotically optimal partitioning heuristic which

divides the environment into a minimal number of ranks

that completely cover the environment. This rank partition

is converted into a coverage path for each robot by solving

a version of the minmax m-TSP using an existing solver.

Our strategy has successfully been used to create coverage

plans for teams of 1–5 robots in real environments that were

mapped experimentally.

II. PARTITIONING THE ENVIRONMENT

The total time a robot takes to follow a path, including the

time needed to slow down for turns, can be approximated by

ttotal =
ℓpath
vrobot

+ nturntturn,

where ℓpath is the path length, vrobot is the robot’s linear

velocity, nturn is the number of turns on the path, and tturn
is the time needed to make one turn including the time wasted

decelerating and accelerating before and after it. A turn is

considered any motion between two long straight segments

of a robot’s path, which usually are by an angle of π but may

be other angles. We assume a fixed turning time, although

in reality it varies slightly with the angle of the turn.

When a robot moves along a path, the region covered de-

pends on the shape and size of its tool’s footprint (Figure 2).

On a long straight path, the covered region consists of a

long rectangle with some additional caps at either end whose

shape depends on the shape of the tool. For the remainder of

this paper, we assume that the tool’s footprint is a straight line

so that the covered region consists solely of the rectangle.

Since the covered area is equal to the tool width times the

path length, a complete coverage path’s length is bounded by

the environment’s area divided by the robot’s tool’s width.

This path length is achieved by any path which covers each

point of the robot’s environment, E , exactly once. Any paths

with no redundant coverage (Figure 1) have the same path

lengths but vary in their number of turns. Since tturn is non-

zero for any real robot, it is important to also minimize the

number of turns.

In a coverage path, the number of turns equals the number

of straight line segments which each result in the coverage of

a long thin rectangle called a rank. Our goal is to partition the

environment into a minimum number of ranks which cover

the entire space.

Fig. 3. Complete coverage when turning outside the perimeter (left),
incomplete coverage when turning inside the perimeter with zero turning
radius (middle), nearly complete coverage when turning inside the perimeter
after following the entire perimeter once (right).

Fig. 4. Perimeter ranks for a polygonal environment. Ranks adjacent to
a corner with angle less than π/2 have been shortened; ranks adjacent to
corners with angles greater than π have been lengthened. There is some
overlap between perimeter ranks to ensure complete coverage.

Problem 1. For a polygon, E , find a set of unit width

rectangles {R1, . . . ,Rn} such that ∪n
i=1Ri = E while

minimizing n.

In Problem 1, the robot’s environment is represented by a

polygon with holes, E ⊂ R
2. The robot is assumed to have

a unit width tool and the coverage ranks are represented by

unit width rectangles, Ri, which may be rotated.

A. Perimeter following

The environment’s perimeter is difficult to cover because

the robot needs to turn around when it reaches the perimeter.

If the robot can travel outside the perimeter, it can achieve

complete coverage by turning around outside the environ-

ment (Figure 3). If it is constrained to the environment, it

must follow ranks along the perimeter to achieve near perfect

coverage. Due to the shape and size of the robot, some small

regions in the corners cannot be covered by any path. We

therefore assume that the polygon, E , in Problem 1 has had

these small unreachable areas removed.

For problems where the robot is constrained to the envi-

ronment, we always include one perimeter rank per edge of

the perimeter (Figure 4). If the angle the edge makes with

the next edge is between π/2 and π, the adjacent ranks end

exactly at the corner. If the angle is less than π/2, the rank

is shortened to be contained within the environment. If the

angle is greater than π, the rank is extended by the width of

the robot to prevent missed coverage near the corner.

B. A rectilinear contraction

Regions of E not covered by perimeter ranks need to

be covered by interior ranks. If {P1, . . . ,Pnpr
} are the

perimeter ranks, then the region that still needs to be covered

Fig. 5. Overlayed grid (left) used to define the rectilinear contraction
(right). Yellow cells are part of the polygon under both definitions; orange
cells are part of the polygon only under one of the definitions; blue cells
are never part of the contraction.

is Ei = E \ ∪
npr

i=1Pi. Coverage can be achieved by covering

any region Ec with Ei ⊆ Ec ⊆ E . We will choose Ec to be a

rectilinear polygon with integer side lengths. For an integer

rectilinear polygon, Problem 1 always has a disjoint solution

consisting of some vertical ranks and some horizontal ranks.

Since most indoor environments are roughly rectilinear, they

can be efficiently covered by these two directions. Although

some environments, such as the agricultural fields in [23] are

highly non-rectilinear or even curved, if a robot is not able

to precisely follow curved paths or make irregular turns, a

rectilinear coverage approach may still be more appropriate

for these problems.

The rectilinear contraction, Ec, can be obtained by overlay-

ing a unit width grid on top of E and Ei. This grid should be

rotated to maximize the length of perimeter that aligns with

the grid axes. Once a grid has been chosen, the contracted

rectilinear polygon can be computed in one of two ways

(Figure 5).

1) The largest Ec ⊆ E is the union of all grid cells fully

contained in E .

2) The smallest Ec with Ei ⊆ Ec, is the union of all grid

cells fully or partially contained in Ei.

If a cell is partially contained in Ei but not fully contained

in E , these two definitions will be different. We use the first

definition, and will later extend interior ranks to ensure that

all of E gets covered completely.

C. A coarse checkerboard partition

Partitioning a rectilinear polygon into a minimum number

of disjoint horizontal and vertical ranks is non-trivial. On

the other hand, partitioning a rectangle is trivial as it should

always be covered by a single direction of ranks. Based on

this observation, we first partition the rectilinear polygon

into disjoint rectangles. When covering rectangles in this

partition, it is not always best to cover each rectangle

with ranks along its longest axis (Figure 6 left). Ranks of

neighboring rectangles can be merged to reduce the total

number of ranks, so a partition with different directions of

ranks in a single rectangle may be better (Figure 6 middle).

However, if a different rectangular partition had been chosen,

each rectangle could have been covered by a single direction

of ranks (Figure 6 right).

To reduce computational complexity, the rectangular parti-

tion should be chosen so that the optimal rank decomposition

Fig. 6. Coverage of rectilinear environment using locally optimal ranks
results in 10 ranks (left). Locally suboptimal ranks result in 16 ranks before
merging and 7 after merging (middle). On a better rectangular partition, the
locally optimal orientations results in the same 7 ranks (right).

Fig. 7. Concave vertices (left) define the coarsest checkerboard partition
(right). The partition is obtained by extending each edge incident to a
concave vertex until it intersects with another edge of the polygon’s
boundary.

of each rectangle contains a single direction. The mixed

orientations of the central rectangle of Figure 6 middle was

necessary because its vertical neighbors were narrower than

it. In general, if all of a rectangle’s neighbors share an entire

edge with it, the optimal rank decomposition has a single

orientation on that rectangle. This observation motivates us

to use a checkerboard partition where every rectangle has

the same width as its vertical neighbors and same height as

its horizontal neighbors.

Checkerboard partitions are closely related to the poly-

gon’s concave vertices. In any checkerboard partition, each

edge of a rectangle extends until it intersects with an orthog-

onal edge of the rectilinear polygon’s boundary. As the edges

of the rectilinear polygon are guaranteed to be edges of some

rectangle in the partition, edges incident to concave vertices

must be extended in any checkerboard partition. The coarsest

checkerboard partition can be obtained by using only these

edges (Figure 7). We will use this partition, which contains

O(n2) rectangles where n is the number of vertices of the

environment, when computing the rank decomposition.

D. Orienting the rectangles

An assignment of orientations—either horizontal or

vertical—to each rectangle of the checkerboard partition de-

fines a rank partition. The objective is to assign orientations

to minimize the number of ranks and solve Problem 1. For

a checkerboard partition with N rectangles, there are 2N

possible assignments so it is not feasible to check them all.

Instead, we use a heuristic which creates a locally optimal

assignment.

Local optimality means that the number of ranks from the

assignment cannot be improved by changing the orientation

of a single rectangle. The locally optimal orientation of

a rectangle depends on its dimensions and its neighbors’

orientations. As a neighbor’s orientation only matters if it

(a) (b) (c)

(d) (e) (f)

Fig. 8. Possible cases for a rectangle’s four neighbors and their orientations.
Blue represents horizontal ranks; yellow represents vertical ranks; white with
a dotted outline represents no neighbor or a neighbor oriented the wrong
way. If the central rectangle is green (cases (a), (c), and (f)), it may be
oriented horizontally or vertically depending on its dimensions. If the central
rectangle is blue (cases (b), (d), and (e)), it must be oriented horizontally
to locally minimize number of turns.

is compatible for merging, there are six cases up to sym-

metry to consider (Figure 8). The locally optimal orientation

maximizes the number of ranks merged minus the number

of new ranks added.

(a) No compatible neighbors: Optimal orientation is aligned

with the longest edge to minimize new ranks added.

(b) One compatible neighbor: Optimal orientation is aligned

with that neighbor so no new ranks are added.

(c) Two compatible neighbors in different directions: Both

orientations are optimal and do not add new ranks.

(d) Two compatible neighbors in the same direction: Opti-

mal orientation is aligned with both neighbors to reduce

the total number of ranks.

(e) Three compatible neighbors: Optimal orientation is

aligned with the direction in which it has two neighbors

to reduce the total number of ranks.

(f) Four compatible neighbors: Optimal orientation is

aligned with the shorter edge to maximize the number

of ranks merged.

A locally optimal assignment is any assignment where every

rectangle’s orientation is locally optimal.

The criteria for local optimality can also be used to convert

any assignment into a locally optimal one by flipping the

orientation of any rectangle whose orientation is not locally

optimal. Flipping the orientation causes a strict decrease in

the cost which is equal to the number of ranks. As the

cost is bounded below by the cost of the globally optimal

assignment, this procedure is guaranteed to terminate.

This result motivates a heuristic (Algorithm 1) for generat-

ing locally optimal solutions to Problem 1. First, it chooses

a random orientation for each rectangle (line 1). In each

round of the algorithm (lines 3–20), the orientations of

rectangles are repeatedly flipped if not locally optimal or

set to the bias if there are two locally optimal orientations.

The bias (line 2) is fixed in each round and is used for case

(c) and for cases (a) and (f) if the rectangle is square as

both orientations are optimal (line 9). By using a bias we

change rectangles’ orientations without changing the cost

which may enable a different cell to flip later to decrease

the cost. In each round, we keep track of which rectangles

have already been checked (line 16) and uncheck rectangles

if their neighbor flips (lines 10 and 13). Once all rectangles

have been checked, the bias is flipped (line 18) and a new

round begins if any improvements were made in the previous

round. Improvements are defined as flips which decrease the

cost of the assignment (line 15). The algorithm terminates

after a round where no improvements were made (line 20).

Algorithm 1: Orient rectangles

Input: Checkerboard partition, P = {r1, . . . , rN}
Output: Locally optimal assignment of orientations

o : P → {H,V}
1 o← Random assignment of orientations

2 bias← Random orientation (H or V)

3 while True do

4 Set r1, . . . , rN to unchecked

5 Improvement ← False

6 while there are unchecked rectangles do

7 r ← Random unchecked rectangle

8 L← {locally optimal orientations for r}
9 if |L| = 2 and o(r) 6= bias then

10 Flip o(r)
11 Set r’s neighbors to unchecked

12 else if |L| = 1 and o(r) 6∈ L then

13 Flip o(r)
14 Set r’s neighbors to unchecked

15 Improvement ← True

16 Set r to checked

17 if Improvement then

18 Flip bias

19 else

20 Return o

If a different bias is used in the last round of Algorithm 1,

different locally optimal assignments with the same cost may

be returned (Figure 9). Algorithm 1 is guaranteed to reach a

local optimum, but not the global optimum. As each iteration

of the innermost loop (lines 7 to 17) can be performed

in constant time, the algorithm runs very fast and can be

repeated multiple times to increase the probability of finding

the global optimum.

E. The final rank partition

The locally optimal assignment of orientations for the

checkerboard partition can be converted into a rank partition

which solves Problem 1 for Ec. First, adjacent compatible

neighbors are merged into larger rectangles. These rectangles

are sliced along their long axes into unit width rectangles

which are the ranks of the partition which solves Problem 1

for Ec (Figure 10 left). These ranks are extended to the

perimeter of E to get the interior ranks, which together with

the perimeter ranks from Section II-A solve Problem 1 on E
(Figure 10 right). Extending the interior ranks guarantees that

Fig. 9. Optimal orientations for the rectangles (blue is horizontal; yellow is
vertical) in a checkerboard partition which were obtained using Algorithm 1.
Both solutions result in the same number of ranks. The left solution was
optimized with a horizontal bias in the final round of Algorithm 1; the right
solution finished with a vertical bias.

Fig. 10. Rank partitions for Ec (left) and E (right).

the combination of perimeter and interior ranks covers the

entirety of E which is reachable given the robot’s shape and

size. The overall algorithm (Algorithm 2) therefore produces

a locally optimal feasible solution to Problem 1. By using

different initial orientations in the inner loop (lines 5–10),

after many iterations the algorithm finds a global optimum

almost surely and it is therefore asymptotically optimal.

Algorithm 2: Rank Partition

Input: Polygonal region, E ⊂ R
2; Number of

iterations, niterations

Output: Set of ranks, {R1, . . . ,Rn} which solve

Problem 1

1 {P1, . . .Pnpr
} ← Perimeter ranks of E

2 Ec ← Rectilinear contraction of E
3 P = {r1, . . . , rN} ← Checkboard partition of Ec
4 n∗

ir ←∞
5 for i ∈ {1, . . . , niterations} do

6 o← Orientations for P /* Algorithm 1 */

7 {I1, . . . Inir
} ← Interior ranks determined by o

8 if nir < n∗

ir then

9 n∗

ir ← nir

10 I∗ ← {I1, . . . , Inir
}

11 return {R1, . . . ,Rn} ← {P1, . . . ,Pnpr
} ∪ I∗

III. COMBINING RANKS INTO PATHS

Coverage of the entire environment can be achieved by

consecutively covering all of the ranks returned by Al-

gorithm 2. The optimal order to cover the ranks can be

determined by solving a variant of the travelling salesperson

problem (TSP). The TSP is NP-hard [24], however several

heuristics [25], [26] and computer packages [27], [28] exist

for it. As these methods are well-established, we only present

Fig. 11. Endpoints and midpoints of interior ranks (left) and perimeter
ranks (right) which are vertices in the graph used by the TSP solver to
generate the coverage path. Filled circles represent endpoints; empty circles
represent midpoints which are used to enforce that endpoints of ranks are
visited consecutively. Lines connecting endpoints and midpoints represent
the only edges incident to midpoints with finite weights.

an approach for converting our problem into a TSP instance

and do not discuss how to solve the TSP.

The TSP is usually formulated as a graph, where ver-

tices represent cities and weights on edges represent the

travel times between cities. In coverage, we would ideally

have the graph’s vertices represent coverage ranks and the

graph’s edge weights represent the travel times between the

ranks. However, the travel times between two ranks depend

on which endpoints of the ranks the robot is ending and

starting at. Since the travel times between these endpoints

is usually large, we instead use one vertex for each of a

rank’s endpoints. Solving the TSP on all rank endpoints does

not guarantee a solution where both endpoints of a rank

appear consecutively resulting in coverage of the rank. To

force the robot to follow the ranks, we constrain the TSP

so that endpoints of the same rank are always adjacent.

This constraint is enforced by adding an additional midpoint

vertex for each rank with infinite cost to any vertex other

than its rank’s endpoints forcing the rank’s endpoints to be

visited consecutively (Figure 11). The edge weights for edges

between endpoints of different ranks represent the travel time

from the end of one rank to the start of another. They can

be computed in cubic time by constructing a visibility graph

using Welzl’s algorithm and solving for the shortest paths

using the Floyd-Warshall algorithm [29].

Solving the TSP on the complete weighted graph consist-

ing of all rank endpoints and midpoints and the travel times

between them gives a time-minimizing path on the graph

(Figure 12 left). For multirobot coverage, we can find paths

for each robot by solving the minmax m-TSP [30], [31], [32]

on the same graph to minimize the time taken by the slowest

robot (Figure 12 right). There exist variants of both the TSP

and m-TSP which either specify or do not specify the robots’

start and end locations. These variants can be used to solve

coverage problems with specified or unspecified start and

end locations for each robot.

IV. RESULTS

During the development of the iRobot Roomba i7+TM

robotic vacuum cleaner, we experimentally mapped 25 in-

door test environments using the robot. These test environ-

ments are furnished home and office environments with areas

ranging from 10m2 to 107m2. The combined area of the 25

environments is 1285m2. The maps are built from sensor

Fig. 12. Turn-minimizing coverage strategies for one robot with no depot
(left) and two robots with one depot each (right).

Table I. Cumulative path lengths, numbers of turns, and expected mission
times when 25 test environments are covered by teams of 1–5 robots using
two different strategies. The 25 environments have a combined coverable
area of 1285m2 and the robots have a tool width of 10 cm. The expected
mission times are for robots which travel at 30 cm/s and take 5 s per turn.

nrobots Strategy ℓ (km) nturns t (hh:mm:ss)

1 orientation 15.224 12185 30:59:07
1 2 orientations 15.195 11377 29:50:08

Improvement 0.19% 6.63% 3.71%

1 orientation 15.326 12260 15:35:14
2 2 orientations 15.303 11380 14:58:10

Improvement 0.15% 7.18% 3.96%

1 orientation 15.479 12335 10:28:36
3 2 orientations 15.461 11533 10:05:51

Improvement 0.12% 6.50% 3.62%

1 orientation 15.637 12410 7:55:05
4 2 orientations 15.564 11586 7:35:49

Improvement 0.46% 6.64% 4.05%

1 orientation 15.757 12485 6:22:53
5 2 orientations 15.715 11663 6:08:37

Improvement 0.27% 6.58% 3.72%

data from the robot’s camera, bumper, and odometry and are

then smoothed to obtain a polygonal boundary.

For these maps, we computed coverage plans using two

strategies: the turn-minimization strategy with two rank ori-

entations presented in this paper and a similar strategy with

only one rank orientation. Paths were computed from the

rank decomposition using the m-TSP approach described in

[32]. The two strategies were compared on the basis of total

path length, total number of turns, and expected mission time

when all 25 environments are covered by teams of 1–5 robots

(Table I). Sample paths for a team of two robots in the largest

of the 25 environments using both strategies are shown in

Figure 13. The two approaches have nearly identical path

lengths; however, our turn minimization approach reduced

turns by 6.7% resulting in a 3.8% reduction in total mission

time. When more robots are used, the total path length and

number of turns remain similar but the expected mission

time, decreases by a factor of approximately 1
nrobots

because

the robots are covering the environment simultaneously.

When computing optimal rank partitions, Algorithm 1

ran 50 times with different random initial conditions and

we recorded the number of iterations of the inner loop

(lines 6–16) and computation time needed to reach the local

minimum. The number of iterations scaled linearly with the

number of rectangles in the checkerboard partition and the

computational runtime scaled proportional to n1.59
v where nv

Fig. 13. Comparison of robot coverage plans for a team of two robots in
a 107m2 test environment using one orientation (left) and two orientations
(right). For the 1 orientation strategy, the robots have expected coverage
times of 1:17:30 (blue) and 1:17:27 (orange). The 2 orientation strategy’s
mission time is 3.7% faster with expected coverage times of 1:14:38 (blue)
and 1:14:28 (orange).

0 400 800
0

1

2

3

4

Rectangles

It
er

at
io

n
s

(×
1

0
0

0
)

0 100 200
0

5

10

15

Vertices

T
im

e
(m

s)

Fig. 14. Regression results showing linear relationship (ŷ = 4.53x+26.24)
between number of iterations of the inner loop of Algorithm 1 and the
number of rectangles in a checkerboard partition (left); and relationship of
ŷ = 0.002826x1.59 between the computational runtime of Algorithm 1
and the number of vertices in a polygon. Computations were performed in
C++ on a standard consumer laptop running Ubuntu.

is the number of vertices (Figure 14) and only required 15ms
of computing time for the largest real environment.

V. CONCLUSIONS

Many robots are slow at turning so the time needed to

follow a path depends on the path’s length and the number

of turns. We presented a multirobot coverage strategy which

explicitly considers the number of turns required. Turns are

minimized by partitioning the environment into long unit-

width rectangles called ranks. Perimeter ranks are parallel to

the perimeter of the environment; interior ranks are oriented

horizontally or vertically. The interior ranks are constructed

using a novel heuristic which minimizes the number of ranks.

Coverage paths are generated for m robots by solving a

version of the minmax m-TSP on a graph related to the set

of ranks. We compared this strategy with one which does

not minimize turns on 25 real indoor environments with a

combined area of 1285m2 mapped by the iRobot Roomba

i7+TM. For coverage with 1–5 robots, this strategy reduced

turns by 6.7% and the coverage time by 3.8% on average.

REFERENCES

[1] M. Held, On the computational geometry of pocket machining.
Springer Science & Business Media, 1991, vol. 500.

[2] H. Choset and P. Pignon, “Coverage path planning: The boustrophedon
cellular decomposition,” in Field and service robotics. Springer, 1998,
pp. 203–209.

[3] E. M. Arkin, S. P. Fekete, and J. S. Mitchell, “Approximation al-
gorithms for lawn mowing and milling,” Computational Geometry,
vol. 17, no. 1-2, pp. 25–50, 2000.

[4] H. Choset, “Coverage for robotics–a survey of recent results,” Annals

of Mathematics and Artificial Intelligence, vol. 31, no. 1, pp. 113–126,
2001.

[5] E. Galceran and M. Carreras, “A survey on coverage path planning
for robotics,” Robotics and Autonomous Systems, vol. 61, no. 12, pp.
1258–1276, 2013.

[6] A. Xu, C. Viriyasuthee, and I. Rekleitis, “Efficient complete coverage
of a known arbitrary environment with applications to aerial opera-
tions,” Autonomous Robots, vol. 36, no. 4, pp. 365–381, 2014.

[7] E. U. Acar, H. Choset, A. A. Rizzi, P. N. Atkar, and D. Hull,
“Morse decompositions for coverage tasks,” The International Journal

of Robotics Research, vol. 21, no. 4, pp. 331–344, 2002.
[8] N. Agmon, N. Hazon, and G. A. Kaminka, “The giving tree: Con-

structing trees for efficient offline and online multi-robot coverage,”
Annals of Mathematics and Artificial Intelligence, vol. 52, no. 2, pp.
143–168, 2008.

[9] W. H. Huang, “Optimal line-sweep-based decompositions for coverage
algorithms,” in International Conference on Robotics and Automation

(ICRA), vol. 1. IEEE, 2001, pp. 27–32.
[10] W. Sheng, N. Xi, H. Chen, Y. Chen, and M. Song, “Surface partitioning

in automated CAD-guided tool planning for additive manufacturing,”
in International Conference on Intelligent Robots and Systems (IROS),
vol. 2. IEEE, 2003, pp. 2072–2077.

[11] D. Ding, Z. S. Pan, D. Cuiuri, and H. Li, “A tool-path generation
strategy for wire and arc additive manufacturing,” The International

Journal of Advanced Manufacturing Technology, vol. 73, no. 1-4, pp.
173–183, 2014.

[12] S. Bochkarev and S. L. Smith, “On minimizing turns in robot coverage
path planning,” in International Conference on Automation Science

and Engineering (CASE). IEEE, 2016, pp. 1237–1242.
[13] I. Maza and A. Ollero, “Multiple UAV cooperative searching operation

using polygon area decomposition and efficient coverage algorithms,”
in Distributed Autonomous Robotic Systems 6. Springer, 2007, pp.
221–230.

[14] Y. Li, H. Chen, M. J. Er, and X. Wang, “Coverage path planning
for UAVs based on enhanced exact cellular decomposition method,”
Mechatronics, vol. 21, no. 5, pp. 876–885, 2011.

[15] G. S. Avellar, G. A. Pereira, L. C. Pimenta, and P. Iscold, “Multi-
UAV routing for area coverage and remote sensing with minimum
time,” Sensors, vol. 15, no. 11, pp. 27 783–27 803, 2015.

[16] S. Hert and V. Lumelsky, “Polygon area decomposition for multiple-
robot workspace division,” International Journal of Computational

Geometry & Applications, vol. 8, no. 04, pp. 437–466, 1998.
[17] H. Bast and S. Hert, “The area partitioning problem,” Canadian

Conference on Computational Geometry (CCCG), 2000.
[18] M. Ahmadi and P. Stone, “A multi-robot system for continuous

area sweeping tasks,” in International Conference on Robotics and

Automation (ICRA). IEEE, 2006, pp. 1724–1729.
[19] C. S. Kong, N. A. Peng, and I. Rekleitis, “Distributed coverage with

multi-robot system,” in International Conference on Robotics and

Automation (ICRA). IEEE, 2006, pp. 2423–2429.
[20] I. Rekleitis, A. P. New, E. S. Rankin, and H. Choset, “Efficient bous-

trophedon multi-robot coverage: An algorithmic approach,” Annals of

Mathematics and Artificial Intelligence, vol. 52, no. 2, pp. 109–142,
2008.

[21] N. Karapetyan, K. Benson, C. McKinney, P. Taslakian, and I. Rek-
leitis, “Efficient multi-robot coverage of a known environment,” in
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 1846–1852.

[22] A. C. Kapoutsis, S. A. Chatzichristofis, and E. B. Kosmatopoulos,
“DARP: Divide areas algorithm for optimal multi-robot coverage path
planning,” Journal of Intelligent & Robotic Systems, vol. 86, no. 3-4,
pp. 663–680, 2017.

[23] T. Oksanen and A. Visala, “Coverage path planning algorithms for
agricultural field machines,” Journal of Field Robotics, vol. 26, no. 8,
pp. 651–668, 2009.

[24] C. Papadimitriou, “The Euclidean travelling salesman problem is NP-
complete,” Theoretical Computer Science, vol. 4, no. 3, pp. 237–244,
1977.

[25] S. Lin and B. Kernighan, “An effective heuristic algorithm for the
traveling-salesman problem,” Operations Research, vol. 21, no. 2, pp.
498–516, 1973.

[26] N. Christofides, “Worst-case analysis of a new heuristic for the
travelling salesman problem,” DTIC Document, Tech. Rep., 1976.

[27] W. Cook. (2016) Concorde TSP solver. [Online]. Available:
http://www.math.uwaterloo.ca/tsp/concorde/

[28] K. Helsgaun. LKH version 2.0.7. [Online]. Available: http:
//www.akira.ruc.dk/∼keld/research/LKH/

[29] R. W. Floyd, “Algorithm 97: shortest path,” Communications of the

ACM, vol. 5, no. 6, p. 345, 1962.
[30] E. Kivelevitch, B. Sharma, N. Ernest, M. Kumar, and K. Cohen, “A

hierarchical market solution to the min-max multiple depots vehicle
routing problem,” Unmanned Systems, vol. 2, no. 01, pp. 87–100,
2014.

[31] Y. Wang, Y. Chen, and Y. Lin, “Memetic algorithm based on sequential
variable neighborhood descent for the minmax multiple traveling
salesman problem,” Computers & Industrial Engineering, vol. 106,
pp. 105–122, 2017.

[32] I. Vandermeulen, R. Groß, and A. Kolling, “Balanced task allocation
by partitioning the multiple traveling salesperson problem,” in 18th

International Conference on Autonomous Agents and Multiagent Sys-

tems (AAMAS). International Foundation for Autonomous Agents
and Multiagent Systems, 2019.

http://www.math.uwaterloo.ca/tsp/concorde/
http://www.akira.ruc.dk/~keld/research/LKH/
http://www.akira.ruc.dk/~keld/research/LKH/

	INTRODUCTION
	Related work
	Contribution

	PARTITIONING THE ENVIRONMENT
	Perimeter following
	A rectilinear contraction
	A coarse checkerboard partition
	Orienting the rectangles
	The final rank partition

	COMBINING RANKS INTO PATHS
	RESULTS
	CONCLUSIONS
	References

