61 research outputs found

    Inflammation plays a critical role in 2,8-dihydroxyadenine nephropathy

    Get PDF
    International audienceAdenine phosphoribosyltransferase (APRT) deficiency is a genetic disease characterized by an increased production of 2,8 dihydroxyadenine (2,8-DHA) precipitating in urine, leading to a crystalline nephropathy and end-stage renal disease. Here, we describe the high prevalence of granuloma (88%) in biopsies from patients with APRT deficiency. A murine model of 2,8-DHA nephropathy was generated, showing that anakinra or dexamethasone, combined with allopurinol, improved renal function to a larger extent than allopurinol alone, the standard therapy. Inflammation plays a critical role in the development of 2,8-DHA nephropathy, and therapy based upon drugs targeting innate immunity could improve renal function recovery

    Inflammation plays a critical role in 2,8-dihydroxyadenine nephropathy

    Get PDF
    Adenine phosphoribosyltransferase (APRT) deficiency is a genetic disease characterized by an increased production of 2,8 dihydroxyadenine (2,8-DHA) precipitating in urine, leading to a crystalline nephropathy and end-stage renal disease. Here, we describe the high prevalence of granuloma (88%) in biopsies from patients with APRT deficiency. A murine model of 2,8-DHA nephropathy was generated, showing that anakinra or dexamethasone, combined with allopurinol, improved renal function to a larger extent than allopurinol alone, the standard therapy. Inflammation plays a critical role in the development of 2,8-DHA nephropathy, and therapy based upon drugs targeting innate immunity could improve renal function recovery

    Evaluation of the ability of bone marrow derived cells to engraft the kidney and promote renal tubular regeneration in mice following exposure to cisplatin

    Full text link
    International audienceIt has been suggested that bone marrow derived stem cells have the ability to engraft the kidney and improve the outcome of severe acute kidney injury (AKI) in mice exposed to high doses of cisplatin, providing hope for cancer patients in whom irreversible renal damage occasionally occurs following the use of this highly effective anti-tumor drug. We tested the therapeutic potential of bone marrow derived cells injected during the acute phase (day 3 after cisplatin administration) of experimentally-induced AKI in C57Bl6/J mice, characterized by massive tubular necrosis, apoptosis, and a low proliferation capacity. We failed to show any benefit of bone marrow derived cells versus a regular homogenate of intact renal cells, or normal saline. Using cell tracers and flow cytometry, we demonstrated that bone marrow derived cells did indeed home to the bone marrow of the recipients but failed to settle in the kidney. Conversely, renal cells homed to injured kidneys. However, neither cell therapy protected the animals against cisplatin-induced death. We therefore question the short-term efficacy of bone marrow derived cells used to repair established injuries of the tubular epithelium

    Ex vivo analysis of renal proximal tubular cells

    Get PDF
    Background: Experimental models are inevitably a compromise between accurately reproducing a pathological situation and schematically simplifying it, which is intended to provide both relevance and conclusiveness. In-vivo models are very relevant, but multiple cell-types undergoing various changes may hinder the observation of individual molecular events. Results: Here, we describe a method for analyzing and isolating specific cell types from the kidney and studying the phenotype they have acquired in vivo. Using flow cytometry, immunofluorescence, and RT-PCR, we show that our method is suitable for studying and isolating proximal tubular cells with an anti Prominin-1 antibody. Kidneys are subjected to mechanical dissociation followed by flow-cytometry analysis. Hundreds of thousands of proximal tubular cells are then isolated by magnetic separation followed by direct analysis or primary cell culture. Using our method, we detect phenotypic changes in the proximal tubular cells after renal ischemia reperfusion, and we isolate the proximal tubular cells, with a purity over 80%. Conclusions: This method is efficient, quick, simple, and cheap, and should be useful for studying cell-type specific parameters after in vivo experimental studies. It is also a simple method to obtain a specific primary cell culture from any animal strain

    Preventing Calpain Externalization by Reducing ABCA1 Activity with Probenecid Limits Melanoma Angiogenesis and Development

    No full text
    International audienceCalpains, intracellular proteases specifically inhibited by calpastatin, play a major role in neoangiogenesis involved in tumor invasiveness and metastasis. They are partly exteriorized via the ATP-binding cassette transporter A1(ABCA1) transporter, but the importance of this process in tumor growth is still unknown. The aim of our study was to investigate the role of extracellular calpains in a model of melanoma by blocking their extracellular activity or exteriorization. In the first approach, a B16-F10 model of melanoma was developed in transgenic mice expressing high extracellular levels of calpastatin. In these mice, tumor growth was inhibited by ∼ 3-fold compared with wild-type animals. In vitro cytotoxicity assays and in vivo tumor studies have demonstrated that this protection was associated with a defect in tumor neoangiogenesis. Similarly, in wild-type animals given probenecid to blunt ABCA1 activity, melanoma tumor growth was inhibited by ∼ 3-fold. Again, this response was associated with a defect in neoangiogenesis. In vitro studies confirmed that probenecid limited endothelial cell migration and capillary formation from vascular explants. The observed reduction in fibronectin cleavage under these conditions is potentially involved in the response. Collectively, these studies demonstrate that probenecid, by blunting ABCA1 activity and thereby calpain exteriorization, limits melanoma tumor neoangiogenesis and invasiveness

    The cannabinoid receptor 1 is involved in renal fibrosis during chronic allograft dysfunction: Proof of concept

    No full text
    International audienceChronic allograft dysfunction (CAD), defined as the replacement of functional renal tissue by extracellular matrix proteins, remains the first cause of graft loss. The aim of our study was to explore the potential role of the cannabinoid receptor 1 (CB1) during CAD. We retrospectively quantified CB1 expression and correlated it with renal fibrosis in 26 kidney-transplanted patients who underwent serial routine kidney biopsies. Whereas CB1 expression was low in normal kidney grafts, it was highly expressed during CAD, especially in tubular cells. CB1 expression significantly increased early on after transplantation, from day 0 (D0) to month 3 post-transplant (M3) (22.5% ± 15.4% vs 33.4% ± 13.8%, P < .01), and it remained stable thereafter. CB1 expression correlated with renal fibrosis at M3 (P = .04). In an in vitro model of tacrolimus-mediated fibrogenesis by tubular cells, we found that tacrolimus treatment significantly induced mRNA and protein expression of CB1 concomitantly to col3a1 and col4a3 up regulation. Administration of rimonabant, a CB1 antagonist, blunted collagen synthesis by tubular cells (P < .05). Overall, our study strongly suggests an involvement of the cannabinoid system in the progression of fibrosis during CAD and indicates the therapeutic potential of CB1 antagonists in this pathology
    corecore