72 research outputs found
Direct Calophyllum oil extraction and resin separation with a binary solvent of n-hexane and methanol mixture
This study investigated the use of a mixture of n-hexane and methanol as a binary solvent for the direct oil extraction and resin separation from Calophyllum seeds, in a single step. Optimal oil and resin yields and physicochemical properties were determined by identifying the best extraction conditions. The solvent mixture tested extracted oil and resin effectively from Calophyllum seeds, and separated resin from oil. Extraction conditions affected oil and resin yields and their physicochemical properties, with the n-hexane-to-methanol ratio being the most critical factor. Oil yield improved as n-hexane-to-methanol ratio increased from 0.5:1 to 2:1, and resin yield increased as methanol-to-n-hexane ratio increased from 0.5:1 to 2:1. Physicochemical properties of oil and resin, particularly for acid value and impurity content, improved as the n-hexane-to-methanol ratio decreased from 2:1 to 0.5:1. The best oil (51% with more than 95% triglycerides) and resin (18% with more than 5% polyphenols) yields were obtained with n-hexane-to-methanol ratios of 2:1 and 0.5:1, respectively, at a temperature of 50 °C, with an extraction time of 5 h. The best values for physicochemical property of oil were a density of 0.885 g/cm3, a viscosity of 26.0 mPa.s, an acid value of 13 mg KOH/g, an iodine value of 127 g/100 g, an unsaponifiable content of 1.5%, a moisture content of 0.8% and an ash content of 0.04%
New ideas for non-animal approaches to predict repeated-dose systemic toxicity: Report from an EPAA Blue Sky Workshop
© 2020 The Authors The European Partnership for Alternative Approaches to Animal Testing (EPAA) convened a ‘Blue Sky Workshop’ on new ideas for non-animal approaches to predict repeated-dose systemic toxicity. The aim of the Workshop was to formulate strategic ideas to improve and increase the applicability, implementation and acceptance of modern non-animal methods to determine systemic toxicity. The Workshop concluded that good progress is being made to assess repeated dose toxicity without animals taking advantage of existing knowledge in toxicology, thresholds of toxicological concern, adverse outcome pathways and read-across workflows. These approaches can be supported by New Approach Methodologies (NAMs) utilising modern molecular technologies and computational methods. Recommendations from the Workshop were based around the needs for better chemical safety assessment: how to strengthen the evidence base for decision making; to develop, standardise and harmonise NAMs for human toxicity; and the improvement in the applicability and acceptance of novel techniques. “Disruptive thinking” is required to reconsider chemical legislation, validation of NAMs and the opportunities to move away from reliance on animal tests. Case study practices and data sharing, ensuring reproducibility of NAMs, were viewed as crucial to the improvement of non-animal test approaches for systemic toxicity.U.S.Environmental Protection Agency (EPA); Agency for Science, Technology and Research ( A*STAR), Singapor
Chemical cues and pheromones in the sea lamprey (Petromyzon marinus)
Chemical cues and pheromones guide decisions in organisms throughout the animal kingdom. The neurobiology, function, and evolution of olfaction are particularly well described in insects, and resulting concepts have driven novel approaches to pest control. However, aside from several exceptions, the olfactory biology of vertebrates remains poorly understood. One exception is the sea lamprey (Petromyzon marinus), which relies heavily upon olfaction during reproduction. Here, we provide a broad review of the chemical cues and pheromones used by the sea lamprey during reproduction, including overviews of the sea lamprey olfactory system, chemical cues and pheromones, and potential applications to population management. The critical role of olfaction in mediating the sea lamprey life cycle is evident by a well-developed olfactory system. Sea lamprey use chemical cues and pheromones to identify productive spawning habitat, coordinate spawning behaviors, and avoid risk. Manipulation of olfactory biology offers opportunities for management of populations in the Laurentian Great Lakes, where the sea lamprey is a destructive invader. We suggest that the sea lamprey is a broadly useful organism with which to study vertebrate olfaction because of its simple but well-developed olfactory organ, the dominant role of olfaction in guiding behaviors during reproduction, and the direct implications for vertebrate pest management
Cold atoms in space: community workshop summary and proposed road-map
We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies
- …