34 research outputs found

    A reappraisal of the stratigraphy of the upper Miocene unit X in the Maaseik core, eastern Campine area (northern Belgium)

    Get PDF
    The stratigraphy of the Tortonian-Messinian sequence from the Maaseik core, located on the shoulder of the Roer Valley Graben (RVG) in the eastern Campine area in northern Belgium, was improved. The analysis of the marine palynomorphs (dinoflagellate cysts and acritarchs) from the uppermost part of the Breda Fonnation, the unnamed unit X and the basal part of the Lower Waubach Member led to the recognition of the mid to upper Tortonian Hystricho.sphaeropsis ohseum hiozone. Therefore deposition of this entire analyzed sequence took place sometime between 8.8 to 7.6 Ma. Paleoenvironmental interpretation of the palynomorphs points to shallow marine conditions and most probably a stressed environment during the deposition of unit X. A comparison with the time equivalent stratigraphy in the nearby Belgian Campine, the Dutch RVG and the German Lower Rhine Basin allowed the identification of the Inden Fonnation and required a shift in the base of the Kieseloolite Formation compared to the earlier lithostratigraphic interpretation of the Maaseik core. The regional stratigraphic scheme shows the progressive northwestward extension of the river facies from the Lower Rhine during the late Tortonian

    The Pliocene Lillo, Poederlee, Merksplas, Mol and Kieseloolite Formations in northern Belgium : a synthesis

    Get PDF
    The Pliocene of Belgium subcr ops in the northern part of the country and for more than a century has been the subject of many palaeontological and stratigraphical studies thanks to numerous temporary excavations that became accessible during the civil works for the expansion of the Antwerp Harbour. It was only during subsurface mapping from the 1980s onwards, in combination with cored and geophysical logged drillings, that these data became integrated which has led to new stratigraphical insights. The data relating to the current stratigraphy have now been inventoried, assessed, synthesized and a refined stratigraphical framework and correlation scheme is presented

    A review of the lower and middle Miocene of northern Belgium

    Get PDF
    The stratigraphy, sedimentology and paleogeography of the lower and middle Miocene Berchem and Bolderberg Formations from northern Belgium have been extensively studied during the last decades, a.o. in the framework of doctoral research, as parts of subsurface mapping and interregional geological correlation initiatives by governmental organizations. The last formal stratigraphical revision on formation level, however, almost dates from two decades ago, notwithstanding the fact that a wealth of new data has become available. A compilation and assessment of the stratigraphical data of the lower and middle Miocene has been carried out and a refined stratigraphical framework-based on dinoflagellate cyst stratigraphy-is presented. Recommendations for the National Commission for Stratigraphy of Belgium are proposed. A new member, the Molenbeersel member, is proposed for the glauconite-bearing silts and fine sands in the upper part of the Bolderberg Fonnation in the Roer Valley Graben.Rhine during the late Tortonian

    The Diest Formation : a review of insights from the last decades

    Get PDF
    Research conducted since the 1960s on the upper Miocene Diest Formation in NE Belgium is reviewed and integrated. Their lithology unites the deposits of the glauconiferous Diest Sand in one formation, though biozones and internal sedimentary structures strongly suggest the formation may agglomerate the deposits of two separate, successive sedimentary cycles. The lowermost cycle is thought to have deposited the "Hageland Diest sand" during the early or middle Tortonian. It contains the Diest Sand in the main outcrop area in Hageland, Zuiderkempen and central Limburg, and probably also the Deurne Member near the city of Antwerpen. It furthermore includes the lower part of the Dessel Member in the central Kempen and in the Belgian part of the Roer Valley Graben (RVG). The Hageland Diest cycle represents the infill of a large tidal inlet tributary to the southern North Sea bight, then situated over the southern Netherlands and the Lower Rhine embayment. The Hageland Diest sand has the composition of a marine deposit, yet the confined area of occurrence and the presence of tens of metres deep incisions at the base, set it apart. The confinement of the embayment, strong tides and a steady supply of coastal-marine sand arc invoked as the main driving forces that resulted in the distinctive geometry and internal architecture of the unit. The upper cycle is associated with the "Kempen Diest sand", which is found in the subsurface of the RVG and the Noorderkempen. It has a late Tortonian to earliest Messinian age with progressively younger ages occurring to the NW. It encompasses the upper part of the Dessel Member and the overlying, coarser Diest Sand, and correlates to most or all of the thickly developed Diessen Formation in The Netherlands. It is the deposit of a prograding marine delta, containing both marine components and continental components fed by the palaeo-Meuse/Rhine river mouths. Accommodation space kept increasing during deposition, due to subsidence of the deposition area, especially inside the RVG but also in the Noorderkempen. Although there is a fair consensus on the above, many concrete points about the geometry and depositional history of the Diest Formation and even a definitive decision on its single or dual character remain to be sorted out. In addition, this review excludes the Flemish Hills sand and the Gruitrode Member from the Diest Formation

    The Kasterlee Formation and its relation with the Diest and Mol Formations in the Belgian Campine

    Get PDF
    Stratigraphic analysis of cored and geophysically logged boreholes in the Kasterlee-Geel-Retie-Mol-Dessel area of the Belgian Campine has established the presence of two lithostratigraphic units between the classical Diest and Mol Formations, geometrically related to the type Kasterlee Sand occurring west of the Kasterlee village and the study area. A lower 'clayey Kasterlee' unit, equivalent to the lithology occurring at the top of the Beerzel and Heist-op-den-Berg hills, systematically occurs to the east of the Kasterlee village. An overlying unit has a pale colour making it lithostratigraphically comparable to Mol Sand although its fine grain size, traces of glauconite and geometrical position have traditionally led stratigraphers to consider it as a lateral variety of the type Kasterlee Sand; it has been named the 'lower Mol' or 'Kasterlee-sensu-Gulinck' unit in this study. In the present analysis, the greenish glauconitic Kasterlee Sand in its hilly stratotype area evolves eastwards into the lower 'clayey Kasterlee' unit and possibly also into an overlying 'lower Mol' or `Kasterlee-sensu-Gulinck' unit, although it is equally possible that the latter unit has an erosive contact and therefore is stratigraphically slightly younger than the type Kasterlee Sand west of the Kasterlee village. A lateral extension of this detailed stratigraphic succession into the faulted one of east Limburg is proposed

    Validation of plasma proteomic biomarkers relating to brain amyloid burden in the EMIF-Alzheimer's disease multimodal biomarker discovery cohort

    Get PDF
    We have previously investigated, discovered, and replicated plasma protein biomarkers for use to triage potential trials participants for PET or cerebrospinal fluid measures of Alzheimer's disease (AD) pathology. This study sought to undertake validation of these candidate plasma biomarkers in a large, multi-center sample collection. Targeted plasma analyses of 34 proteins with prior evidence for prediction of in vivo pathology were conducted in up to 1,000 samples from cognitively healthy elderly individuals, people with mild cognitive impairment, and in patients with AD-type dementia, selected from the EMIF-AD catalogue. Proteins were measured using Luminex xMAP, ELISA, and Meso Scale Discovery assays. Seven proteins replicated in their ability to predict in vivo amyloid pathology. These proteins form a biomarker panel that, along with age, could significantly discriminate between individuals with high and low amyloid pathology with an area under the curve of 0.74. The performance of this biomarker panel remained consistent when tested in apolipoprotein E ϵ4 non-carrier individuals only. This blood-based panel is biologically relevant, measurable using practical immunocapture arrays, and could significantly reduce the cost incurred to clinical trials through screen failure

    Dickkopf-1 Overexpression in vitro Nominates Candidate Blood Biomarkers Relating to Alzheimer's Disease Pathology

    Get PDF
    Previous studies suggest that Dickkopf-1 (DKK1), an inhibitor of Wnt signaling, plays a role in amyloid-induced toxicity and hence Alzheimer's disease (AD). However, the effect of DKK1 expression on protein expression, and whether such proteins are altered in disease, is unknown. We aim to test whether DKK1 induced protein signature obtained in vitro were associated with markers of AD pathology as used in the amyloid/tau/neurodegeneration (ATN) framework as well as with clinical outcomes. We first overexpressed DKK1 in HEK293A cells and quantified 1,128 proteins in cell lysates using aptamer capture arrays (SomaScan) to obtain a protein signature induced by DKK1. We then used the same assay to measure the DKK1-signature proteins in human plasma in two large cohorts, EMIF (n = 785) and ANM (n = 677). We identified a 100-protein signature induced by DKK1 in vitro. Subsets of proteins, along with age and apolipoprotein E ɛ 4 genotype distinguished amyloid pathology (A + T-N-, A+T+N-, A+T-N+, and A+T+N+) from no AD pathology (A-T-N-) with an area under the curve of 0.72, 0.81, 0.88, and 0.85, respectively. Furthermore, we found that some signature proteins (e.g., Complement C3 and albumin) were associated with cognitive score and AD diagnosis in both cohorts. Our results add further evidence for a role of DKK regulation of Wnt signaling in AD and suggest that DKK1 induced signature proteins obtained in vitro could reflect theATNframework as well as predict disease severity and progression in vivo

    Advances in the therapy of Alzheimer's disease: Targeting amyloid beta and tau and perspectives for the future

    Get PDF
    Worldwide multidisciplinary translational research has led to a growing knowledge of the genetics and molecular pathogenesis of Alzheimer's disease (AD) indicating that pathophysiological brain alterations occur decades before clinical signs and symptoms of cognitive decline can be diagnosed. Consequently, therapeutic concepts and targets have been increasingly focused on early-stage illness before the onset of dementia; and distinct classes of compounds are now being tested in clinical trials. At present, there is a growing consensus that therapeutic progress in AD delaying disease progression would significantly decrease the expanding global burden. The evolving hypothesis- and evidence-based generation of new diagnostic research criteria for early-stage AD has positively impacted the development of clinical trial designs and the characterization of earlier and more specific target populations for trials in prodromal as well as in pre- and asymptomatic at-risk stages of AD

    Episodic activity of a dormant fault in tectonically stable Europe: The Rauw fault (NE Belgium)

    No full text
    Our knowledge about large earthquakes in stable continental regions comes from studies of faults that generated historical surface rupturing earthquakes or were identified by their recent imprint in the morphology. Here, we evaluate the co-seismic character and movement history of the Rauw fault in Belgium, which lacks geomorphological expression and historical/present seismicity. This 55-km-long normal fault, with known Neogene and possibly Early Pleistocene activity, is the largest offset fault west of the active Roer Valley Graben. Its trace was identified in the shallow subsurface based on high resolution geophysics. All the layers within the Late Pliocene Mol Formation (3.6 to 2.59 Ma) are displaced 7 m vertically, without growth faulting, but deeper deposits show increasing offset. A paleoseismic trench study revealed cryoturbated, but unfaulted, late glacial coversands overlying faulted layers of Mol Formation. In-between those deposits, the fault tip was eroded, along with evidence for individual displacement events. Fragmented clay gouge observed in a micromorphology sample of the main fault evidences co-seismic faulting, as opposed to fault creep. Based on optical and electron spin resonance dating and trench stratigraphy, the 7 m combined displacement is bracketed to have occurred between 2.59 Ma and 45 ka. The regional presence of the Sterksel Formation alluvial terrace deposits, limited to the hanging wall of the Rauw fault, indicates a deflection of the Meuse/Rhine confluence (1.0 to 0.5 Ma) by the fault's activity, suggesting that most of the offset occurred prior to/at this time interval. In the trench, Sterksel Formation is eroded but reworked gravel testifies for its former presence. Hence, the Rauw fault appears as typical of plate interior context, with an episodic seismic activity concentrated between 1.0 and 0.5 Ma or at least between 2.59 Ma to 45 ka, possibly related to activity variations in the adjacent, continuously active Roer Valley Graben. (C) 2017 Elsevier BY. All rights reserved
    corecore