4,400 research outputs found

    The control of space manipulators subject to spacecraft attitude control saturation limits

    Get PDF
    The motions of robotic manipulators mounted on spacecraft can disturb the spacecraft's positions and attitude. These disturbances can surpass the ability of the system's attitude control reaction jets to control them, for the disturbances increase as manipulator speeds increase. If the manipulator moves too quickly the resulting disturbances can exceed the saturation levels of the reaction jets, causing excessive spacecraft motions. A method for planning space manipulator's motions is presented, so that tasks can be performed as quickly as possible without saturating the system's attitude control jets

    Strange hyperon and antihyperon production from quark and string-rope matter

    Get PDF
    Hyperon and antihyperon production is investigated using two microscopical models: {\bf (1)} the fast hadronization of quark matter as given by the ALCOR model; {\bf (2)} string formation and fragmentation as in the HIJING/B model. We calculate the particle numbers and momentum distributions for Pb+Pb collisions at CERN SPS energies in order to compare the two models with each other and with the available experimental data. We show that these two theoretical approaches give similar yields for the hyperons, but strongly differ for antihyperons.Comment: 11 pages, Latex, 3 EPS figures, contribution to the Proceedings of the 4th International Conference on Strangeness in Quark Matter (SQM'98), Padova, Italy, 20-24 July 199

    Self-Assembling Ice Membranes on Europa: Brinicle Properties, Field Examples, and Possible Energetic Systems in Icy Ocean Worlds

    Full text link
    Brinicles are self-assembling tubular ice membrane structures, centimeters to meters in length, found beneath sea ice in the polar regions of Earth. We discuss how the properties of brinicles make them of possible importance for chemistry in cold environments-including that of life's emergence-and we consider their formation in icy ocean world. We argue that the non-ice composition of the ice on Europa and Enceladus will vary spatially due to thermodynamic and mechanical properties that serve to separate and fractionate brines and solid materials. The specifics of the composition and dynamics of both the ice and the ocean in these worlds remain poorly constrained. We demonstrate through calculations using FREZCHEM that sulfate likely fractionates out of accreting ice in Europa and Enceladus, and thus that an exogenous origin of sulfate observed on Europa's surface need not preclude additional endogenous sulfate in Europa's ocean. We suggest that, like hydrothermal vents on Earth, brinicles in icy ocean worlds constitute ideal places where ecosystems of organisms might be found

    Controlled Irradiative Formation of Penitentes

    Full text link
    Spike-shaped structures are produced by light-driven ablation in very different contexts. Penitentes 1-4 m high are common on Andean glaciers, where their formation changes glacier dynamics and hydrology. Laser ablation can produce cones 10-100 microns high with a variety of proposed applications in materials science. We report the first laboratory generation of centimeter-scale snow and ice penitentes. Systematically varying conditions allows identification of the essential parameters controlling the formation of ablation structures. We demonstrate that penitente initiation and coarsening requires cold temperatures, so that ablation leads to sublimation rather than melting. Once penitentes have formed, further growth of height can occur by melting. The penitentes intially appear as small structures (3 mm high) and grow by coarsening to 1-5 cm high. Our results are an important step towards understanding and controlling ablation morphologies.Comment: Accepted for publication in Physical Review Letter

    Fire effects on temperate forest soil C and N storage

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/116995/1/eap20112141189.pd

    Correspondence between geometrical and differential definitions of the sine and cosine functions and connection with kinematics

    Full text link
    In classical physics, the familiar sine and cosine functions appear in two forms: (1) geometrical, in the treatment of vectors such as forces and velocities, and (2) differential, as solutions of oscillation and wave equations. These two forms correspond to two different definitions of trigonometric functions, one geometrical using right triangles and unit circles, and the other employing differential equations. Although the two definitions must be equivalent, this equivalence is not demonstrated in textbooks. In this manuscript, the equivalence between the geometrical and the differential definition is presented assuming no a priori knowledge of the properties of sine and cosine functions. We start with the usual length projections on the unit circle and use elementary geometry and elementary calculus to arrive to harmonic differential equations. This more general and abstract treatment not only reveals the equivalence of the two definitions but also provides an instructive perspective on circular and harmonic motion as studied in kinematics. This exercise can help develop an appreciation of abstract thinking in physics.Comment: 6 pages including 1 figur

    A layered approach to technology transfer of AVIRIS between Earth Search Sciences, Inc. and the Idaho National Engineering Laboratory

    Get PDF
    Since initial contact between Earth Search Sciences, Inc. (ESSI) and the Idaho National Engineering Laboratory (INEL) in February, 1994, at least seven proposals have been submitted in response to a variety of solicitations to commercialize and improve the AVIRIS instrument. These proposals, matching ESSI's unique position with respect to agreements with the National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) to utilize, miniaturize, and commercialize the AVIRIS instrument and platform, are combined with the applied engineering of the INEL. Teaming ESSI, NASA/JPL, and INEL with diverse industrial partners has strengthened the respective proposals. These efforts carefully structure the overall project plans to ensure the development, demonstration, and deployment of this concept to the national and international arenas. The objectives of these efforts include: (1) developing a miniaturized commercial, real-time, cost effective version of the AVIRIS instrument; (2) identifying multiple users for AVIRIS; (3) integrating the AVIRIS technology with other technologies; (4) gaining the confidence/acceptance of other government agencies and private industry in AVIRIS; and (5) increasing the technology base of U.S. industry

    Ultrasound-Assisted Peripheral Venous Access in Young Children: A Randomized Controlled Trial and Pilot Feasibility Study

    Get PDF
    OBJECTIVES: Intravenous (IV) access in children treated in the emergency department (ED) is frequently required and often difficult to obtain. While it has been shown that ultrasound can be useful in adults for both central and peripheral venous access, research regarding children has been limited. We sought to determine if the use of a static ultrasound technique could, a) allow clinicians to visualize peripheral veins and b) improve success rates of peripheral venous cannulation in young children in the ED.METHODS: We performed a randomized clinical trial of children < 7 years in an academic pediatric ED who required IV access and who had failed the first IV attempt. We randomized patients to either continued standard IV attempts or ultrasound-assisted attempts. Clinicians involved in the study received one hour of training in ultrasound localization of peripheral veins. In the ultrasound group, vein localization was performed by an ED physician who marked the skin overlying the target vessel. Intravenous cannulation attempts were then immediately performed by a pediatric ED nurse who relied on the skin mark for vessel location. We allowed for technique cross-over after two failed IV attempts. We recorded success rate and location of access attempts. We compared group success rates using differences in 95% confidence intervals (CI).RESULTS: We enrolled 44 children over a one-year period. The median age of enrollees was 9.5 months. We visualized peripheral veins in all patients in the ultrasound group (n=23) and in those who crossed over to ultrasound after failed standard technique attempts (n= 8). Venipuncture was successful on the first attempt in the ultrasound group in 13/23 (57%, CI, 35% to 77%), versus 12/21 (57%, CI, 34% to 78%) in the standard group, difference between groups 0.6% (95% CI -30% to 29%). First attempt cannulation success in the ultrasound group was 8/23 (35%, CI, 16% to 57%), versus 6/21 (29%, CI, 11% to 52%) in the standard group, difference between groups 6% (95% CI -21% to 34%).CONCLUSION: Ultrasound allows physicians to visualize peripheral veins of young children in the ED. We were unable to demonstrate, however, a clinically important benefit to a static ultrasound aided vein cannulation technique performed by clinicians with limited ultrasound training over standard technique after one failed IV attempt in an academic pediatric ED
    corecore