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Abstract

The motions of robotic manipulators mounted on spacecraft can disturb the spacecraft's

positions and attitude. These disturbances can surpass the ability of the system's attitude control
reaction jets to control them, for the disturbances increase as manipulator speeds increase. If the ma-
nipulator moves too quickly the resulting disturbances can exceed the saturation levels of the reaction
jets, causing excessive spacecraft motions. This paper presents a method for planning space
manipulator, s motions so that tasks can be performed as quickly as possible without saturating the
system's attitude control jets.

1. Introduction

This paper presents a method that enables space manipulator motions to be planned so that tasks
can be performed in minimum time, without saturating the system's attitude control jets.

Future space missions are expected to use robotic manipulators mounted on spacecraft to
construct space stations and repair satellites. However, the motions of such manipulators can disturb
the position and attitude of their spacecraft. While control techniques have been proposed for space
manipulators which permit their spacecraft to move in response to manipulator motions [ 1], for many
missions even relatively small unplanned spacecraft mouons may be undesirable. Although these
motions can be controlled using the spacecraft's attitude control reaction jets, disturbances increase as
manipulator speeds increase. Even with the use of recently developed methods for planning space
manipulator motions to minimize the disturbances [2,3], these disturbances can exceed the saturation
levels of the spacecraft reaction jet system and result in excessive spacecraft motions. Therefore,

motion planning for space manipulators must consider the limits of the reaction jets if space
manipulators are to be able to perform their tasks quickly, in minimum time, without excessive

spacecraft motions.

A number of methods have been developed to plan the minimum time motion of fixed based

manipulators [4-9]. However these methods do not consider the problem of the motion planning for
space manipulators with their spacecraft control systems saturation constraints. The technique

presented here considers the saturation limits of both a manipulator's joint actuators and those of the
reaction jets. It can be applied to any rigid, non-redundant space manipulator system whose actuator
and spacecraft capabilities can be specified as a function of the state of the system. It provides both
the optimal position and velocity command profiles for the system and the optimal open-loop actuator
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andreactionjet forcesandtorquesrequiredfor agiventask.Theseforcesandtorquescanbeusedas
feedforwardsignalsby manipulatorandspacecraftclosedloopcontrolsystemsto reducedynamic
controlsystemerrors. Thetechniquecanalsobeusedwith conventionalplanningmethodsto aidein
planningnonoptimalmanipulatormotionsthatwill notexceedthesystem'scapabilities.

Results demonstratethe effectivenessof the method for planning minimum time space
manipulatormotions. Theyalsoshowthat thetechniquecanbeusedto designthelightestweight
systemto performagivensetof tasksin a specifiedamountof time.

2. The System

The technique is illustrated by its application to a simple system consisting of a three degree-of-
freedom (DOF) revolute manipulator mounted on a spacecraft with six DOF, see Figure 1. The
system has a total of nine DOF. The spacecraft is equipped with six reaction jets which can
counteract the disturbance forces and moments generated by the manipulator's motion.
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a. System and Manipulator Joint Variables. b. Spacecraft Rotation Variables.

Figure 1. System Model and Variables

The spacecraft's six DOF are represented by the variables X, Y, Z, $1' $2 and $3 which define

its position and orientation with respect to the inertial coordinate frame N, also shown in Figure 1. A

body-fixed coordinate frame (Xbody,Ybody,Zbody) is attached to the spacecraft at its center of mass.

The angle 01 is the rotation of the spacecraft about the Ybody axis, 02 is the rotation about the Zbody

axis, and 03 is the rotation about the Xbody axis, as shown in Figure lb. The three manipulator joint

motions, 04, 05 and 06, are shown in Figure 1a.

3. The Dynamic Model

The planning algorithm requires a full nonlinear dynamic model of the system. These equations
may be formulated in any convenient manner. Here a Lagrangian formulation was used to develop

the the dynamic equations for the system shown in Figure 1 with X, Y, Z, 01, 02, 03, 04, 05 and 06

as generalized coordinates. The resulting dynamic equations may be written in the vector form [ 10]:
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is a 9 element vector of generalized coordinates,

is a 9x9 mass matrix,

is a 9x9x9 Coriolis tensor, and

is a 9 element vector of generalized forces and moments.

The elements of the Coriolis tensor, can be calculated from:

< 3M¢i] 1 _Mckj
C¢ijk= _¢k - 2 _¢i

(2)

This nonlinear matrix equation was used in an independent dynamic simulation of the system to

verify the results of the planning algorithm. When the objective of the optimization is to maintain a
stationary spacecraft, a simplified form of Equation (1) can be used in the algorithm. It is obtained
by setting the time derivatives of the spacecraft's generalized coordinates to zero. This simplification
must be done after the complete equations of motion have been derived; setting these variables equal
to zero before the Lagrangian differentiation leads to errors [10]. The resulting simplified equations
have the form:
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where the elements of the simplified mass matrix and Coriolis tensor are subsets of the original full
mass matrix and Coriolis tensor respectively.

4. The Planning Algorithm

The minimum time planning technique presented here is based on a well known algorithm

developed for optimizing the motions of conventional manipulators along fixed paths [5], which has
also been extended to non-fixed manipulator paths [6]. This algorithm is based on the fact that the
minimum time motion of a manipulator along its path is achieved when its acceleration or deceleration
is at its maximum at every point along the path. The algorithm finds the switching points between
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the maximum acceleration and deceleration regions of the path using a function called the Limit
Curve.

The Limit Curve, Sm(S), is generally plotted in the S - S phase plane and is the plot of the

maximum velocity that the manipulator may have at any distance S along the path without exceeding
the system's capabilities. To find the Limit Curve for a space manipulator, including the constraints
imposed by the system's reaction jets Equations (1) must be transformed from an equation in terms
of n generalized coordinates to an equation in terms of a scalar path coordinate, such as S, the
distance along the path [5]. For a non-redundant space manipulator, the prescribed motion of the
manipulator and the spacecraft may be written as a vector function of the generalized coordinates in
the form:

P(S) = (4)

where P is generally a 12 element vector representing the position and orientation of the manipulator
end-effector and spacecraft, generally given in inertial coordinates. Only a three element P vector is

required for the system shown in Figure 1 because the motion of the base is nominally stationary and
the manipulator has only three DOF. Using Equation (4) and its derivatives, it is possible to
transform the equations of motion, Equation (1), into an equation of the form [10]:

+ S2= I (5)

The elements of the T vector in Equation (5) are the joint actuator torques and the forces and
moments acting at the spacecraft center of mass. The time optimal algorithm requires that the
constraints due to the limits of the the manipulator's actuators and the spacecraft attitude control jets
must be stated for the T vector as a function of the state of the system. It is therefore necessary to
transform the dynamic equations into a form where the generalized force vector, called T*, consists
of both the reaction jet forces (F1 through F6) and the manipulator actuator torques (T7, TS, and

T9), since the saturation constraints are imposed on these forces and torques. The numbering and

locations of the reaction jet forces are shown in Figure 2.
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Figure 2. Reaction Jet System

From fundamental mechanics the following transformation may be written:
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(6)

Using Equation (6), Equation (5) is then transformed into the form:

m*(1)s + =X* (7)

In this form, the limits on both the capabilities of the reaction jets' forces and the joint motors'

torques may easily be taken into account in the formulation of the Limit Curve. The limits on these
torques and forces may be expressed as any function of the state of the system:

T, imin_, _ ) _<T* i < T*imax(_ , _ ) (8)

The Limit Curve is found by noting that for each generalized force, a path acceleration value can be
calculated as a function of the path position and velocity from Equation (8), or:

(9)

Note that b* i and m* i are elements of the vectors m* and b* respectively. From Equation (9), and

the limits on forces and torques, it is possible to calculate the range of path accelerations permitted by
each joint actuator and reaction jet. The range of accelerations allowed by the complete system is
then defined by the limits:

T*imin - b'iS2 tSmin : max [" "_*"i

(10)

•. . (T*imax- b*iS2_

Smax = mm[ " _ J

The maximum velocity allowed by the system at any point along the path, Sm (S), occurs when

the range of allowable S decreases to zero, or Smax = Smin" The function Sm(S) plotted in the

phase plane defines the Limit Curve which is used by the algorithm to find the optimal switching
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points as described in detail in reference [5]. Any conventionally planned trajectory lying above the
optimal trajectory in the phase plane will violate the constraints imposed by the joint motors and the
reaction jets.

This technique has been implemented in a computer software package with extensive computer
graphics to aid the planner in visualizing the results of the optim zafion.

5. Examples

This section describes the application of the planning technique to the example system shown in
Figure 1, whose parameters are given in Table I. The system's masses were chosen so that the
manipulator's motions would produce significant disturbances on the spacecraft.

Table I. Space Manipulator Parameters.

Mass 80. kg
Length 3. m
Diameter 1. m
Principle Moments of Inertia:

about X 20. kg-m 2

about Y 70. kg-m 2

about Z 70. kg-m 2

Maximum Joint Motor Output:
Maximum Reaction Jet Output:
Reaction Jet Locations:

Link 1 Link 2

4. kg 4. kg
1. m 1. m
0.5 m 0.5 m

0.01 kg-m 2 0.01 kg-m 2

0.34 kg-m 2 0.34 kg-m 2

0.34k_-m 2 0.34 kg-rn
15 N-m
10 N

dx = 1.25 m dy = 0.4 m dz = 0.4 m

The manipulator path for the case discussed is shown in Figure 3. The Limit Curve and optimal
trajectory for this case are shown in Figure 4, along with a conventionally planned trajectory. The
optimal trajectory required to complete this maneuver is 3.739 seconds, a significant improvement
compared to approximately 5.4 seconds required by the conventional plan which uses constant
velocity and accelerations. Figure 5 shows that for the optimal trajectory none of the manipulator
joint actuators are used to their full capacity; the maximum torque capabilities are shown as hash
marks on the vertical axes of each plot. Hence the manipulator's speed is governed by the
capabilities of the reaction jets which are at their bounds during the motion, as may be seen in Figure
6. These suggest that this manipulator might be designed with smaller and less powerful motors,
which would both reduce system weight and improve performance.

STARTIN_

P FINAL POINT

_._ PATH

Figure 3. A Three Dimensional View of a Manipulator Path.
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Figure 4. Limit Curve, Optimal and Conventional Trajectories for Example System and Path.
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Figure 5. Manipulator joint motor torque profiles (N-m) as a function of Path Distance, S (m).
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Figure 6. Reaction Jet Force Profiles (N) as a function of Path Distance, S (m).

An independent dynamic simulation was used to verify the results obtained by the algorithm
[11]. It showed that the manipulator followed its prescribed path and the spacecraft remained
virtually stationary when the joint torques and reaction jet forces calculated with the algorithm were
used as dynamic feedforward signals to drive a full nonlinear model of the system: only very small
errors were observed due to slight differences between the models and the integration techniques

used by the two programs. For example, the simulation showed linear spacecraft displacements of
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the less than .0006 meters.In real systemsmodelling errors can lead to undesiredspacecraft
motions,evenwith dynamicfeedforward.Thesecaneasilybecorrectedby thespacecraft'sattitude
control system.Figure 7 showssimulationresultsfor thecasewherethepropertiesof the system
usedin theplanningalgorithmwerein errorby a few percentanda relatively simplePD attitude
control systemwasusedto compensatefor theerrors.Thefigure showsthefeedforwardreaction
forcesandthesmallcontributionrequiredfrom theclosedloopcontrollerto reducethemotionsof the
spacecraftessentiallyto zero.
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Figure 7. Reaction Jet Forces - Openloop and Control components for System with Modelling
Errors.

The importance of the reaction jet forces in holding the spacecraft stationary during the
manipulator's motion can be seen in Figures 8a and 8b, which are simulation results for the case

where the feedforward signals to the reaction jets are set to zero. Such large linear and angular
displacements would be unacceptable in most missions. In most systems the spacecraft's closedloop
attitude control system would reduce these disturbance-induced displacements to some degree.
However, the simulation results obtained in this study show that trying to control manipulator-
disturbed spacecraft motions with feedback control alone can lead to substantial errors, particularly
when the attitude control system's bandwidth is limited by system structural resonances and
controller sampling times. Based on these results one can conclude that for many systems
manipulator disturbances are sufficiently large to require dynamic feedforward compensation in
addition to closedloop attitude control.
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Figure 8 a. Spacecraft Linear Displacements With and Without Reaction Jet Forces (Openloop).
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Figure 8 b. Spacecraft Rotations With and Without Reaction Jet Forces (Openloop).

The simulation results obtained in the study also clearly show that saturation of the reaction jet

system should be avoided, whether or not manipulator motions are planned in a time optimal manner.
Figure 9 shows that the linear motions of the spacecraft became relatively large when the reaction jet
forces required to hold the spacecraft during the manipulator's motions exceeded the reaction jet
capabilities by 20 percent. The rotational motions also became large. This clearly points out the need
to consider the saturation limits of the spacecraft's attitude control system when planning the motions

of its manipulator.
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Figure 9. Linear Spacecraft Displacement for System With Reaction Jet Saturation.

6. Conclusions

This paper presents a method for planning the time optimal motions of space manipulators. It
considers the constraints of the forces and moments acting on the spacecraft, as well as the

constraints of the manipulator joint motors, to calculate a minimum time velocity trajectory for the
manipulator. The algorithm has been verified by an independent simulation. The results obtained in
the study show that the saturation of a space manipulator system's attitude control jets can be an
important problem which should be considered in planning the motions of the manipulator. The
technique developed in this paper, combined with a simple attitude control system to compensate for
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modellingerrors,maybeaneffectivetechniquefor dealingwith thisproblem.Theresultsobtainedin
this studyalsosuggestthatdynamicfeedforwardtechniquesmaybeanimportantpartof anyspace
manipulatorcontrolsystem.
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