229 research outputs found

    Dietary Total Antioxidant Capacity is Inversely Associated with Prostate Cancer Aggressiveness in a Population-Based Study

    Get PDF
    The purpose of this study was to determine the relationship between total antioxidant capacity (TAC) from diet and supplements and prostate cancer aggressiveness among 855 African Americans (AA) and 945 European Americans (EA) in the North Carolina-Louisiana Prostate Cancer Project (PCaP). Cases were classified as either high aggressive, low aggressive, or intermediate aggressive. TAC was calculated from the vitamin C equivalent antioxidant capacity of 42 antioxidants measured via food frequency questionnaire. EA reported greater dietary TAC from diet and supplements combined (P 1500 vs. < 500 mg VCE/d): 0.31 (95% CI: 0.15, 0.67; P-trend < 0.01), 0.28 (95% CI: 0.08, 0.96; P-trend < 0.001), and 0.36 (95% CI: 0.15, 0.86; P-trend = 0.58), respectively. These associations did not appear to differ between AA and EA. These data suggest that greater intake of antioxidants is associated with less aggressive prostate cancer. Additional research is needed to confirm these results and determine the underlying mechanisms

    Complementation of hypersensitivity to DNA interstrand crosslinking agents demonstrates that XRCC2 is a Fanconi anaemia gene

    Get PDF
    Background Fanconi anemia (FA) is a heterogeneous inherited disorder clinically characterized by progressive bone marrow failure, congenital anomalies, and a predisposition to malignancies. Objective Determine, based on correction of cellular phenotypes, whether XRCC2 is a FA gene. Methods Cells (900677) from a previously identified patient with biallelic mutation of XRCC2, among other mutations, were genetically complemented with wild-type XRCC2. Results Wild-type XRCC2 corrects each of three phenotypes characteristic of FA cells, all related to the repair of DNA interstrand crosslinks, including increased sensitivity to mitomycin C (MMC), chromosome breakage, and G2-M accumulation in the cell cycle. Further, the p.R215X mutant of XRCC2, which is harbored by the patient, is unstable. This provides an explanation for the pathogenesis of this mutant, as does the fact that 900677 cells have reduced levels of other proteins in the XRCC2-RAD51B-C-D complex. Also, FANCD2 monoubiquitination and foci formation, but not assembly of RAD51 foci, are normal in 900677 cells. Thus, XRCC2 acts late in the FA-BRCA pathway as also suggested by hypersensitivity of 900677 cells to ionizing radiation. These cells also share milder sensitivities toward olaparib and formaldehyde with certain other FA cells. Conclusions XRCC2/FANCU is a FA gene, as is another RAD51 paralog gene, RAD51C/FANCO. Notably, similar to a subset of FA genes that act downstream of FANCD2, biallelic mutation of XRCC2/FANCU has not been associated with bone marrow failure. Taken together, our results yield important insights into phenotypes related to FA and its genetic origins

    Investigating Europa’s Habitability with the Europa Clipper

    Get PDF
    The habitability of Europa is a property within a system, which is driven by a multitude of physical and chemical processes and is defined by many interdependent parameters, so that its full characterization requires collaborative investigation. To explore Europa as an integrated system to yield a complete picture of its habitability, the Europa Clipper mission has three primary science objectives: (1) characterize the ice shell and ocean including their heterogeneity, properties, and the nature of surface–ice–ocean exchange; (2) characterize Europa’s composition including any non-ice materials on the surface and in the atmosphere, and any carbon-containing compounds; and (3) characterize Europa’s geology including surface features and localities of high science interest. The mission will also address several cross-cutting science topics including the search for any current or recent activity in the form of thermal anomalies and plumes, performing geodetic and radiation measurements, and assessing high-resolution, co-located observations at select sites to provide reconnaissance for a potential future landed mission. Synthesizing the mission’s science measurements, as well as incorporating remote observations by Earth-based observatories, the James Webb Space Telescope, and other space-based resources, to constrain Europa’s habitability, is a complex task and is guided by the mission’s Habitability Assessment Board (HAB)

    Intake of dietary antioxidants is inversely associated with biomarkers of oxidative stress among men with prostate cancer

    Get PDF
    Abstract Prostate cancer is the most common non-cutaneous cancer and the second leading cause of cancer-related mortality among men in the USA. Growing evidence suggests that oxidative stress is involved in the development and progression of prostate cancer. In this study, the association between antioxidants from diet and supplements and biomarkers of oxidative stress in blood ( n 278), urine ( n 298) and prostate tissue ( n 55) were determined among men from the North Carolina-Louisiana Prostate Cancer Project. The association between antioxidant intake and oxidative stress biomarkers in blood and urine was determined using linear regression, adjusting for age, race, prostate cancer aggressiveness and smoking status. Greater antioxidant intake was found to be associated with lower urinary 8-isoprostane concentrations, with a 10 % increase in antioxidant intake corresponding to an unadjusted 1·1 % decrease in urinary 8-isoprostane levels (95 % CI −1·7, −0·3 %; P value&lt;0·01) and an adjusted 0·6 % decrease (95 % CI −1·4, 0·2 %; P value=0·16). In benign prostate tissue, thioredoxin 1 was inversely associated with antioxidant intake ( P =0·02). No significant associations were found for other blood or urinary biomarkers or for malignant prostate tissue. These results indicate that antioxidant intake may be associated with less oxidative stress among men diagnosed with prostate cancer

    Analysis of High-Risk Pedigrees Identifies 12 Candidate Variants for Alzheimer\u27s Disease

    Get PDF
    INTRODUCTION: Analysis of sequence data in high-risk pedigrees is a powerful approach to detect rare predisposition variants. METHODS: Rare, shared candidate predisposition variants were identified from exome sequencing 19 Alzheimer\u27s disease (AD)-affected cousin pairs selected from high-risk pedigrees. Variants were further prioritized by risk association in various external datasets. Candidate variants emerging from these analyses were tested for co-segregation to additional affected relatives of the original sequenced pedigree members. RESULTS: AD-affected high-risk cousin pairs contained 564 shared rare variants. Eleven variants spanning 10 genes were prioritized in external datasets: rs201665195 (ABCA7), and rs28933981 (TTR) were previously implicated in AD pathology; rs141402160 (NOTCH3) and rs140914494 (NOTCH3) were previously reported; rs200290640 (PIDD1) and rs199752248 (PIDD1) were present in more than one cousin pair; rs61729902 (SNAP91), rs140129800 (COX6A2, AC026471), and rs191804178 (MUC16) were not present in a longevity cohort; and rs148294193 (PELI3) and rs147599881 (FCHO1) approached significance from analysis of AD-related phenotypes. Three variants were validated via evidence of co-segregation to additional relatives (PELI3, ABCA7, and SNAP91). DISCUSSION: These analyses support ABCA7 and TTR as AD risk genes, expand on previously reported NOTCH3 variant identification, and prioritize seven additional candidate variants

    Ordered subset linkage analysis supports a susceptibility locus for age-related macular degeneration on chromosome 16p12

    Get PDF
    BACKGROUND: Age-related macular degeneration (AMD) is a complex disorder that is responsible for the majority of central vision loss in older adults living in developed countries. Phenotypic and genetic heterogeneity complicate the analysis of genome-wide scans for AMD susceptibility loci. The ordered subset analysis (OSA) method is an approach for reducing heterogeneity, increasing statistical power for detecting linkage, and helping to define the most informative data set for follow-up analysis. OSA assesses the linkage evidence in subsets of potentially more homogeneous families by rank-ordering family-specific lod scores with respect to trait-associated covariates or phenotypic features. Here, we present results of incorporating five continuous covariates into our genome-wide linkage analysis of 389 microsatellite markers in 62 multiplex families: Body mass index (BMI), systolic (SBP) and diastolic (DBP) blood pressure, intraocular pressure (IOP), and pack-years of cigarette smoking. Chromosome-wide significance of increases in nonparametric multipoint lod scores in covariate-defined subsets relative to the overall sample was assessed by permutation. RESULTS: Using a correction for testing multiple covariates, statistically significant lod score increases were observed for two chromosomal regions: 14q13 with a lod score of 3.2 in 28 families with average IOP ≤ 15.5 (p = 0.002), and 6q14 with a lod score of 1.6 in eight families with average BMI ≥ 30.1 (p = 0.0004). On chromosome 16p12, nominally significant lod score increases (p ≤ 0.05), up to a lod score of 2.9 in 32 families, were observed with several covariate orderings. While less significant, this was the only region where linkage evidence was associated with multiple clinically meaningful covariates and the only nominally significant finding when analysis was restricted to advanced forms of AMD. Families with linkage to 16p12 had higher averages of SBP, IOP and BMI and were primarily affected with neovascular AMD. For all three regions, linkage signals at or very near the peak marker have previously been reported. CONCLUSION: Our results suggest that a susceptibility gene on chromosome 16p12 may predispose to AMD, particularly to the neovascular form, and that further research into the previously suggested association of neovascular AMD and systemic hypertension is warranted

    Early adult-onset POAG linked to 15q11-13 using ordered subset analysis

    Get PDF
    Purpose—Primary open-angle glaucoma (POAG) is a complex inherited disorder. It has been demonstrated in other complex disorders that phenotypic heterogeneity may be the result of genetic heterogeneity and that stratification analysis can be used to increase the power of detection. Ordered subset analysis (OSA) is a recently described method that utilizes the variability of phenotypic traits to determine underlying genetic heterogeneity. Methods—Eighty-six multiplex families with POAG were clinically ascertained for genetic analysis. Age at diagnosis (AAD) was used as a surrogate for age of onset in affected family members. Nine genetic markers within the 15q11–13 interval on chromosome 15 were used for OSA analysis. Results—An 11-cM linkage interval with a peak LOD score of 3.24 centered at the GABRB3 locus (P = 0.013 by permutation test) was identified in a subset of 15 families, which represents 17 % of the total dataset (15/86 families). The mean AAD for the affected OSA families was 44.1 ± 9.1 years (SD). The mean AAD for the complementary group was 61.3 ± 10.4 years. African-American and white families were well represented in the OSA subset. Conclusions—Linkage was identified for POAG to an 11-cM region on chromosome 15
    • …
    corecore