278 research outputs found

    From attosecond to zeptosecond coherent control of free-electron wave functions using semi-infinite light fields

    Get PDF
    Light-electron interaction in empty space is the seminal ingredient for free-electron lasers and also for controlling electron beams to dynamically investigate materials and molecules. Pushing the coherent control of free electrons by light to unexplored timescales, below the attosecond, would enable unprecedented applications in light-assisted electron quantum circuits and diagnostics at extremely small timescales, such as those governing intramolecular electronic motion and nuclear phenomena. We experimentally demonstrate attosecond coherent manipulation of the electron wave function in a transmission electron microscope, and show that it can be pushed down to the zeptosecond regime with existing technology. We make a relativistic pulsed electron beam interact in free space with an appropriately synthesized semi-infinite light field generated by two femtosecond laser pulses reflected at the surface of a mirror and delayed by fractions of the optical cycle. The amplitude and phase of the resulting coherent oscillations of the electron states in energymomentum space are mapped via momentum-resolved ultrafast electron energy-loss spectroscopy. The experimental results are in full agreement with our theoretical framework for light-electron interaction, which predicts access to the zeptosecond timescale by combining semi-infinite X-ray fields with free electrons.Comment: 22 pages, 6 figure

    Laser-Induced Skyrmion Writing and Erasing in an Ultrafast Cryo-Lorentz Transmission Electron Microscopy

    Get PDF
    We demonstrate that light-induced heat pulses of different duration and energy can write skyrmions in a broad range of temperatures and magnetic field in FeGe. Using a combination of camera-rate and pump-probe cryo-Lorentz Transmission Electron Microscopy, we directly resolve the spatio-temporal evolution of the magnetization ensuing optical excitation. The skyrmion lattice was found to maintain its structural properties during the laser-induced demagnetization, and its recovery to the initial state happened in the sub-{\mu}s to {\mu}s range, depending on the cooling rate of the system

    Nanostructured 3C-SiC on Si by a network of (111) platelets: a fully textured film generated by intrinsic growth anisotropy

    Get PDF
    In this paper, we address the unique nature of fully textured, high surface-to-volume 3C-SiC films, as produced by intrinsic growth anisotropy, in turn generated by the high velocity of the stacking fault growth front in two-dimensional (111) platelets. Structural interpretation of high resolution scanning electron microscopy and transmission electron microscopy data is carried out for samples grown in a hot-wall low-pressure chemical vapour deposition reactor with trichlorosilane and ethylene precursors, under suitable deposition conditions. By correlating the morphology and the X-ray diffraction analysis we also point out that twinning along (111) planes is very frequent in such materials, which changes the free-platelet configuration

    Effect of restriction vegan diet's on muscle mass, oxidative status, and myocytes differentiation: A pilot study

    Get PDF
    This study was conceived to evaluate the effects of three different diets on body composition, metabolic parameters and serum oxidative status. We enrolled three groups of healthy men (omnivores, vegetarians and vegans) with similar age, weight and BMI and we observed a significant decrease in muscle mass index and lean body mass in vegan compared to vegetarian and omnivore groups, and higher serum homocysteine levels in vegetarians and vegans compared to omnivores. We studied whether serum from omnivore, vegetarian and vegan subjects affected oxidative stress, growth and differentiation of both cardiomyoblast cell line H9c2 and H-H9c2 (H9c2 treated with H2 O2 to induce oxidative damage). We demonstrated that vegan sera treatment of both H9c2 and H-H9c2 cells induced an increase of TBARS values and cell death and a decrease of free NO2- compared to vegetarian and omnivorous sera. Afterwards, we investigated the protective effects of vegan, vegetarian and omnivore sera on the morphological changes induced by H2 O2 in H9c2 cell line. We showed that the omnivorous sera had major antioxidant and differentiation properties compared to vegetarian and vegan sera. Finally, we evaluated the influence of the three different groups of sera on MAPKs pathway and our data suggested that ERK expression increased in H-H9c2 cells treated with vegetarian and vegan sera and could promote cell death. The results obtained in this study demonstrated that restrictive vegan diet could not prevent the onset of metabolic and cardiovascular diseases nor protect by oxidative damage. This article is protected by copyright. All rights reserved

    Human glioblastoma multiforme: p53 reactivation by a novel MDM2 inhibitor

    Get PDF
    Cancer development and chemo-resistance are often due to impaired functioning of the p53 tumor suppressor through genetic mutation or sequestration by other proteins. In glioblastoma multiforme (GBM), p53 availability is frequently reduced because it binds to the Murine Double Minute-2 (MDM2) oncoprotein, which accumulates at high concentrations in tumor cells. The use of MDM2 inhibitors that interfere with the binding of p53 and MDM2 has become a valid approach to inhibit cell growth in a number of cancers; however little is known about the efficacy of these inhibitors in GBM. We report that a new small-molecule inhibitor of MDM2 with a spirooxoindolepyrrolidine core structure, named ISA27, effectively reactivated p53 function and inhibited human GBM cell growth in vitro by inducing cell cycle arrest and apoptosis. In immunoincompetent BALB/c nude mice bearing a human GBM xenograft, the administration of ISA27 in vivo activated p53, inhibited cell proliferation and induced apoptosis in tumor tissue. Significantly, ISA27 was non-toxic in an in vitro normal human cell model and an in vivo mouse model. ISA27 administration in combination with temozolomide (TMZ) produced a synergistic inhibitory effect on GBM cell viability in vitro, suggesting the possibility of lowering the dose of TMZ used in the treatment of GBM. In conclusion, our data show that ISA27 releases the powerful antitumor capacities of p53 in GBM cells. The use of this MDM2 inhibitor could become a novel therapy for the treatment of GBM patients

    On Schrödinger’s Cat and Evaluation of Trials Disrupted by the Covid19 Pandemic: A Critical Appraisal

    Get PDF
    From the beginning of 2020, the world has been fighting the SARS-Cov-2 outbreak. The life of each one of us has profoundly hanged. Unavoidably, our clinical routine has drastically modified in its priorities and methodologies (1). The COVID-19 pandemic has also raised significant issues in the field of research. The investigators’ responsibility has increased with the need to thoughtfully weigh the risk-benefit ratio for each protocol in an emergency and evolving scenario (2)

    Gender effects on plasma PGRN levels in patients with Alzheimer's disease : a preliminary study

    Get PDF
    Plasma progranulin (PGRN) levels constitute a potentially invaluable biomarker for neurodegenerative diseases including frontotemporal lobar degeneration (FTLD) and, perhaps, Alzheimer's disease (AD). We assessed plasma PGRN levels in 107 AD patients, 36 FTLD patients, and 107 controls. We found that, in female AD patients, there is a positive correlation between PGRN levels and age. Although no significant differences were found between patients and controls, we observed higher levels in females compared to males; in AD patients, a positive correlation between PGRN levels and age was observed in females. In conclusion, our data suggest that PGRN may not be a good biomarker for AD; moreover, gender may influence the plasma PGRN levels of AD patients. \ua9 2013 - IOS Press and the authors. All rights reserved
    • …
    corecore