15 research outputs found

    Differences in BVOC oxidation and SOA formation above and below the forest canopy

    Get PDF
    Gas-phase biogenic volatile organic compounds (BVOCs) are oxidized in the troposphere to produce secondary pollutants such as ozone (O3), organic nitrates (RONO2), and secondary organic aerosol (SOA). Two coupled zero-dimensional models have been used to investigate differences in oxidation and SOA production from isoprene and α-pinene, especially with respect to the nitrate radical (NO3), above and below a forest canopy in rural Michigan. In both modeled environments (above and below the canopy), NO3 mixing ratios are relatively small (< 0.5 pptv); however, daytime (08:00–20:00 LT) mixing ratios below the canopy are 2 to 3 times larger than those above. As a result of this difference, NO3 contributes 12 % of total daytime α-pinene oxidation below the canopy while only contributing 4 % above. Increasing background pollutant levels to simulate a more polluted suburban or peri-urban forest environment increases the average contribution of NO3 to daytime below-canopy α-pinene oxidation to 32 %. Gas-phase RONO2 produced through NO3 oxidation undergoes net transport upward from the below-canopy environment during the day, and this transport contributes up to 30 % of total NO3-derived RONO2 production above the canopy in the morning (∼ 07:00). Modeled SOA mass loadings above and below the canopy ultimately differ by less than 0.5 µg m−3, and extremely low-volatility organic compounds dominate SOA composition. Lower temperatures below the canopy cause increased partitioning of semi-volatile gas-phase products to the particle phase and up to 35 % larger SOA mass loadings of these products relative to above the canopy in the model. Including transport between above- and below-canopy environments increases above-canopy NO3-derived α-pinene RONO2 SOA mass by as much as 45 %, suggesting that below-canopy chemical processes substantially influence above-canopy SOA mass loadings, especially with regard to monoterpene-derived RONO2

    Evidence for the Predominance of Mid-Tropospheric Aerosols as Subtropical Anvil Cloud Nuclei

    Get PDF
    NASA's recent Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida Area Cirrus Experiment focused on anvil cirrus clouds, an important but poorly understood element of our climate system. The data obtained included the first comprehensive measurements of aerosols and cloud particles throughout the atmospheric column during the evolution of multiple deep convective storm systems. Coupling these new measurements with detailed cloud simulations that resolve the size distributions of aerosols and cloud particles, we found several lines of evidence indicating that most anvil crystals form on mid-tropospheric rather than boundary-layer aerosols. This result defies conventional wisdom and suggests that distant pollution sources may have a greater effect on anvil clouds than do local sources

    Toward Aerosol/Cloud Condensation Nuclei (CCN) Closure during CRYSTAL-FACE

    Get PDF
    During July 2002, measurements of cloud condensation nuclei were made in the vicinity of southwest Florida as part of the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) field campaign. These observations, at supersaturations of 0.2 and 0.85%, are presented here. The performance of each of the two CCN counters was validated through laboratory calibration and an in situ intercomparison. The measurements indicate that the aerosol sampled during the campaign was predominantly marine in character: the median concentrations were 233 cm-3 (at S = 0.2%) and 371 cm(sup -3) (at S = 0.85%). Three flights during the experiment differed from this general trend; the aerosol sampled during the two flights on 18 July was more continental in character, and the observations on 28 July indicate high spatial variability and periods of very high aerosol concentrations. This study also includes a simplified aerosol/CCN closure analysis. Aerosol size distributions were measured simultaneously with the CCN observations, and these data are used to predict a CCN concentration using Kohler theory. For the purpose of this analysis, an idealized composition of pure ammonium sulfate was assumed. The analysis indicates that in this case, there was good general agreement between the predicted and observed CCN concentrations: at S = 0.2%, N(sub predicted)/N(sub observed)= 1.047 (R(sup 2)= 0.911)); at S = 0.85%, N(sub predicted)/N(sub observed)=1.201 (R(sup 2)= 0.835)). The impacts of the compositional assumption and of including in-cloud data in the analysis are addressed. The effect of removing the data from the 28 July flight is also examined; doing so improves the result of the closure analysis at S = 0.85%. When omitting that atypical flight, N(sub predicted)/N(sub observed) = 1.085 (R(sup 2) = 0.770) at S = 0.85%
    corecore