662 research outputs found

    The Success Of Stock Selection Strategies In Emerging Markets: Is It Risk Or Behavioral Bias?

    Get PDF
    We examine competing explanations, based on risk and behavioral models, for the profitability of stock selection strategies in emerging markets. We document that both emerging market risk and global risk factors cannot account for the significant excess returns of selection strategies based on value, momentum and earnings revisions indicators. The findings for value and momentum strategies are consistent with the evidence from developed markets supporting behavioral explanations. In addition, for value stocks, the most important behavioral bias appears to be related to underestimation of long-term growth prospects, as indicated by overly pessimistic analysts' earnings forecasts and above average earnings revisions for longer postformation horizons and by quite rapidly improving earnings growth expectations. Furthermore, we find that overreaction effects play a limited role for the earnings revisions strategy, as there is no clear return reversal up until five years after portfolio formation, setting this strategy apart from momentum strategies

    Homolytic C−H Bond Activation by Phosphine−Quinone-Based Radical Ion Pairs

    Get PDF
    Herein, we present the formation of transient radical ion pairs (RIPs) by single-electron transfer (SET) in phosphine−quinone systems and explore their potential for the activation of C−H bonds. PMes3 (Mes=2,4,6-Me3C6H2) reacts with DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone) with formation of the P−O bonded zwitterionic adduct Mes3P−DDQ (1), while the reaction with the sterically more crowded PTip3 (Tip=2,4,6-iPr3C6H2) afforded C−H bond activation product Tip2P(H)(2-[CMe2(DDQ)]-4,6-iPr2-C6H2) (2). UV/Vis and EPR spectroscopic studies showed that the latter reaction proceeds via initial SET, forming RIP [PTip3]⋅+[DDQ]⋅−, and subsequent homolytic C−H bond activation, which was supported by DFT calculations. The isolation of analogous products, Tip2P(H)(2-[CMe2{TCQ−B(C6F5)3}]-4,6-iPr2-C6H2) (4, TCQ=tetrachloro-1,4-benzoquinone) and Tip2P(H)(2-[CMe2{oQtBu−B(C6F5)3}]-4,6-iPr2-C6H2) (8, oQtBu=3,5-di-tert-butyl-1,2-benzoquinone), from reactions of PTip3 with Lewis-acid activated quinones, TCQ−B(C6F5)3 and oQtBu−B(C6F5)3, respectively, further supports the proposed radical mechanism. As such, this study presents key mechanistic insights into the homolytic C−H bond activation by the synergistic action of radical ion pairs.</p

    Sorting cells of the microalga Chlorococcum littorale with increased triacylglycerol productivity

    Get PDF
    Despite extensive research in the last decades, microalgae are still only economically feasible for high valued markets. Strain improvement is a strategy to increase productivities, hence reducing costs. In this work, we focus on microalgae selection: taking advantage of the natural biological variability of species to select variations based on desired characteristics. We focused on triacylglycerol (TAG), which have applications ranging from biodiesel to high-value omega-3 fatty-acids. Hence, we demonstrated a strategy to sort microalgae cells with increased TAG productivity

    Visualization and Analysis Techniques for Three Dimensional Information Acquired by Confocal Microscopy

    Get PDF
    Confocal Scanning Laser Microscopy (CSLM) is particularly well suited for the acquisition of 3-dimensional data of microscopic objects. In the CSLM a specific volume in the object is sampled during the imaging process and the result is stored in a digital computer as a three-dimensional memory array. Optimal use of these data requires both the development of effective visual representations as well as analysis methods. In addition to the well known stereoscopic representation method a number of alternatives for various purposes are presented. When rendering in terms of solid-looking or semitransparent objects is required, an algorithm based on a simulated process of excitation and fluorescence is very suitable. Graphic techniques can be used to examine the 3-dimensional shape of surfaces. For (near-)real time applications a representation method should not require extensive previous data-processing or analysis. From the very extensive field of 3-D image analysis two examples are given

    Homolytic C−H Bond Activation by Phosphine−Quinone-Based Radical Ion Pairs

    Get PDF
    Herein, we present the formation of transient radical ion pairs (RIPs) by single-electron transfer (SET) in phosphine−quinone systems and explore their potential for the activation of C−H bonds. PMes3 (Mes=2,4,6-Me3C6H2) reacts with DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone) with formation of the P−O bonded zwitterionic adduct Mes3P−DDQ (1), while the reaction with the sterically more crowded PTip3 (Tip=2,4,6-iPr3C6H2) afforded C−H bond activation product Tip2P(H)(2-[CMe2(DDQ)]-4,6-iPr2-C6H2) (2). UV/Vis and EPR spectroscopic studies showed that the latter reaction proceeds via initial SET, forming RIP [PTip3]⋅+[DDQ]⋅−, and subsequent homolytic C−H bond activation, which was supported by DFT calculations. The isolation of analogous products, Tip2P(H)(2-[CMe2{TCQ−B(C6F5)3}]-4,6-iPr2-C6H2) (4, TCQ=tetrachloro-1,4-benzoquinone) and Tip2P(H)(2-[CMe2{oQtBu−B(C6F5)3}]-4,6-iPr2-C6H2) (8, oQtBu=3,5-di-tert-butyl-1,2-benzoquinone), from reactions of PTip3 with Lewis-acid activated quinones, TCQ−B(C6F5)3 and oQtBu−B(C6F5)3, respectively, further supports the proposed radical mechanism. As such, this study presents key mechanistic insights into the homolytic C−H bond activation by the synergistic action of radical ion pairs.</p
    • …
    corecore