63 research outputs found

    Mangrove dispersal disrupted by projected changes in global seawater density

    Get PDF
    The degree to which the distribution of mangrove forests will be impacted by climate change depends on the dispersal and establishment of sea-faring propagules, which drive forest rejuvenation, gene flow and range expansion. Climate change affects sea surface density via changes in temperature and salinity. However, these changes have not been mapped and it remains unclear how these factors may impact mangrove propagule dispersal. Here, we provide evidence for strong warming of coastal mangrove waters and elevated geographic variability in surface ocean density under representative concentration pathway RCP 8.5 by 2100. The largest changes will occur in the Indo West Pacific region, the primary hotspot of mangrove diversity. By comparing propagule densities to predicted sea surface density, we assessed potential effects on mangrove propagule dispersal. In the future, a warmer and fresher ocean is likely to alter dispersal trajectories of mangrove propagules and increase rates of sinking in unsuitable offshore locations, potentially reducing the resilience of mangrove forests

    Dispersal and coastal geomorphology limit potential for mangrove range expansion under climate change

    Get PDF
    Latitudinal range limits for mangroves on high-energy, wave-dominated coasts are controlled by geomorphological features and estuarine dynamics. Mangroves reach a southern global range limit along the South African coastline, but the distribution is patchy, with stands occurring in only 16% of the estuaries in the region. Yet, the persistence of forests planted >50 years ago beyond the natural distribution limit suggests that additional estuaries could support mangroves. Understanding regional drivers is necessary to inform global-scale estimates for how this important ecosystem is predicted to respond to climate change

    Contrasting Effects of Historical Sea Level Rise and Contemporary Ocean Currents on Regional Gene Flow of Rhizophora racemosa in Eastern Atlantic Mangroves

    Get PDF
    Mangroves are seafaring taxa through their hydrochorous propagules that have the potential to disperse over long distances. Therefore, investigating their patterns of gene flow provides insights on the processes involved in the spatial genetic structuring of populations. The coastline of Cameroon has a particular geomorphological history and coastal hydrology with complex contemporary patterns of ocean currents, which we hypothesize to have effects on the spatial configuration and composition of present-day mangroves within its spans. A total of 982 trees were sampled from 33 transects (11 sites) in 4 estuaries. Using 11 polymorphic SSR markers, we investigated genetic diversity and structure of Rhizophora racemosa, a widespread species in the region. Genetic diversity was low to moderate and genetic differentiation between nearly all population pairs was significant. Bayesian clustering analysis, PCoA, estimates of contemporary migration rates and identification of barriers to gene flow were used and complemented with estimated dispersal trajectories of hourly released virtual propagules, using high-resolution surface current from a mesoscale and tide-resolving ocean simulation. These indicate that the Cameroon Volcanic Line (CVL) is not a present-day barrier to gene flow. Rather, the Inter-Bioko-Cameroon (IBC) corridor, formed due to sea level rise, allows for connectivity between two mangrove areas that were isolated during glacial times by the CVL. Genetic data and numerical ocean simulations indicated that an oceanic convergence zone near the Cameroon Estuary complex (CEC) presents a strong barrier to gene flow, resulting in genetic discontinuities between the mangrove areas on either side. This convergence did not result in higher genetic diversity at the CEC as we had hypothesized. In conclusion, the genetic structure of Rhizophora racemosa is maintained by the contrasting effects of the contemporary oceanic convergence and historical climate change-induced sea level rise

    Dispersal and coastal geomorphology limit potential for mangrove range expansion under climate change

    Get PDF
    Latitudinal range limits for mangroves on high-energy, wave-dominated coasts are controlled by geomorphological features and estuarine dynamics. Mangroves reach a southern global range limit along the South African coastline, but the distribution is patchy, with stands occurring in only 16% of the estuaries in the region. Yet, the persistence of forests planted \u3e50 years ago beyond the natural distribution limit suggests that additional estuaries could support mangroves. Understanding regional drivers is necessary to inform global-scale estimates for how this important ecosystem is predicted to respond to climate change. Here, we combine species distribution modelling (MaxEnt), Lagrangian particle tracking using an eddy- and tide-resolving numerical ocean model, and connectivity matrices, to identify suitable mangrove habitats along the South African coastline at present, as well as under the IPCC RCP4.5 and RCP8.5 climate scenarios. Within the current South African distribution range (±900 km), eight more estuaries were identified to be suitable under contemporary conditions. When considering potential range extension (±110 km), an additional 14 suitable estuaries were identified. Connectivity matrices suggest limited long-distance dispersal, stranding mostly at or near the release location, and a decreased probability of connectivity towards the range limit. Under both future climate scenarios, 30% of estuaries currently supporting mangroves are predicted to become unsuitable, while an additional six estuaries beyond the current distribution are predicted to become suitable. However, there is limited connectivity between these new sites and established forests. Synthesis. This study shows that dispersal substantially limits mangrove distribution at the southern African range limit and highlights the importance of including this process in species distribution models. Ultimately, our results provide new insight into mangrove conservation and management at range limits that are not controlled predominantly by temperature, as it has been assumed that mangroves will largely expand to higher latitudes under climate change

    Mangrove forests as a nature-based solution for coastal flood protection: Biophysical and ecological considerations

    Get PDF
    Nature-based coastal protection is increasingly recognised as a potentially sustainable and cost-effective solution to reduce coastal flood risk. It uses coastal ecosystems such as mangrove forests to create resilient designs for coastal flood protection. However, to use mangroves effectively as a nature-based measure for flood risk reduction, we must understand the biophysical processes that govern risk reduction capacity through mangrove ecosystem size and structure. In this perspective, we evaluate the current state of knowledge on local physical drivers and ecological processes that determine mangrove functioning as part of a nature-based flood defence. We show that the forest properties that comprise coastal flood protection are well-known, but models cannot yet pinpoint how spatial heterogeneity of the forest structure affects the capacity for wave or surge attenuation. Overall, there is relatively good understanding of the ecological processes that drive forest structure and size, but there is a lack of knowledge on how daily bed-level dynamics link to long-term biogeomorphic forest dynamics, and on the role of combined stressors influencing forest retreat. Integrating simulation models of forest structure under changing physical (e.g. due to sea-level change) and ecological drivers with hydrodynamic attenuation models will allow for better projections of long-term natural coastal protection

    Biological and environmental drivers of mangrove propagule dispersal: a field and modeling approach

    Get PDF
    There are large gaps in the coverage of critical ecological processes related to the movement of individuals or genes (i.e. dispersal), which is critical for determining the spread and persistence of populations across space. In this dissertation we investigate understudied but important aspects of the dispersal process in mangroves, with as the main objective the reduction of parameter and model uncertainty. Models rarely incorporate realism and complexity at the level of emigration, transfer and immigration phases, hampering reliable predictions of dispersal patterns and long-term population dynamics under different climate change scenarios. Mangrove ecosystems function at the edge of land and sea, often covering large intertidal areas along (sub)tropical coastal regions worldwide. Mangroves can live in these highly dynamic and demanding environmental conditions via a series of remarkable adaptations. They produce buoyant seeds and fruits (propagules) that disperse at the ocean surface (i.e. hydrochory - see cover image). Despite their ecological and economical value, about 40 % of original mangroves have been lost worldwide during the last 50 years due to excessive exploitation and development. Deforestation, degradation and conversion to other land uses like intensive shrimp farming and agriculture have reduced and fragmented these ecosystems at an alarming rate. Climate change, probably most pronouncedly via changes in sea level, poses another important threat.Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    Inferring Connectivity Range in Submerged Aquatic Populations (Ruppia L.) Along European Coastal Lagoons From Genetic Imprint and Simulated Dispersal Trajectories

    No full text
    Coastal salt- and brackish water lagoons are unique shallow habitats characterized by beds of submerged seagrasses and salt-tolerant Ruppia species. Established long-term and large-scale patterns of connectivity in lagoon systems can be strongly determined by patterns of nearshore and coastal currents next to local bird-mediated seed dispersal. Despite the importance of dispersal in landscape ecology, characterizing patterns of connectivity remains challenging in aquatic systems. Here, we aimed at inferring connectivity distances of Ruppia cirrhosa along European coastal lagoons using a population genetic imprint and modeled dispersal trajectories using an eddy-resolving numerical ocean model that includes tidal forcing. We investigated 1,303 individuals of 46 populations alongside subbasins of the Mediterranean (Balearic, Tyrrhenian, Ionian) and the Atlantic to Baltic Sea coastline over maximum distances of 563–2,684 km. Ten microsatellite loci under an autotetraploid condition revealed a mixed sexual and vegetative reproduction mode. A pairwise FST permutation test of populations revealed high levels of historical connectivity only for distance classes up to 104–280 km. Since full range analysis was not fully explanatory, we assessed connectivity in more detail at coastline and subbasin level using four approaches. Firstly, a regression over restricted geographical distances (300 km) was done though remained comparable to full range analysis. Secondly, piecewise linear regression analyses yielded much better explained variance but the obtained breakpoints were shifted toward greater geographical distances due to a flat slope of regression lines that most likely reflect genetic drift. Thirdly, classification and regression tree analyses revealed threshold values of 47–179 km. Finally, simulated ocean surface dispersal trajectories for propagules with floating periods of 1–4 weeks, were congruent with inferred distances, a spatial Bayesian admixed gene pool clustering and a barrier detection method. A kinship based spatial autocorrelation showed a contemporary within-lagoon connectivity up to 20 km. Our findings indicate that strong differentiation or admixtures shaped historical connectivity and that a pre- and post LGM genetic imprint of R. cirrhosa along the European coasts was maintained from their occurrence in primary habitats. Additionally, this study demonstrates the importance of unraveling thresholds of genetic breaks in combination with ocean dispersal modeling to infer patterns of connectivity

    Mangroves–Captured By The Keen Eye Of A 17th Century Landscape Painter

    No full text
    Artists and scientists alike came across unfamiliar landscapes and strikingly strange fauna and flora when they embarked for the ‘colonies’. In the 17th and 18th centuries curiosity for the exotic developed into direct scientific observation, which is often still appreciated scientifically today, such as in biological taxonomy. Often observation, interpretation and reporting were geared towards functional aspects, a resourcist view on the environment in the wake of the colonial enterprise. This entailed that focus could be biased towards aspects of mercantile, political or strategic interest. Landscape vision is no exception for the possible biases. The Dutch painter Frans Post during his 7 year stay in the New World (Brazil) in the 17th century was the first to depict mangroves as a very characteristic tropical vegetation, unfamiliar to Europeans, in spite of its limited interest in the context of colonial economy. He did this in the strong and developing tradition of Dutch landscape painting.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore