29 research outputs found

    Waxy Chlamydomonas reinhardtii: monocellular algal mutants defective in amylose biosynthesis and granule-bound starch synthase activity accumulate a structurally modified amylopectin.

    No full text
    Amylose-defective mutants were selected after UV mutagenesis of Chlamydomonas reinhardtii cells. Two recessive nuclear alleles of the ST-2 gene led to the disappearance not only of amylose but also of a fraction of the amylopectin. Granule-bound starch synthase activities were markedly reduced in strains carrying either st-2-1 or st-2-2, as is the case for amylose-deficient (waxy) endosperm mutants of higher plants. The main 76-kDa protein associated with the starch granule was either missing or greatly diminished in both mutants, while st-2-1-carrying strains displayed a novel 56-kDa major protein. Methylation and nuclear magnetic resonance analysis of wild-type algal storage polysaccharide revealed a structure identical to that of higher-plant starch, while amylose-defective mutants retained a modified amylopectin fraction. We thus propose that the waxy gene product conditions not only the synthesis of amylose from endosperm storage tissue in higher-plant amyloplasts but also that of amylose and a fraction of amylopectin in all starch-accumulating plastids. The nature of the ST-2 (waxy) gene product with respect to the granule-bound starch synthase activities is discussed

    Starchless Mutants of Chlamydomonas reinhardtii Lack the Small Subunit of a Heterotetrameric ADP-Glucose Pyrophosphorylase

    No full text
    ADP-glucose synthesis through ADP-glucose pyrophosphorylase defines the major rate-controlling step of storage polysaccharide synthesis in both bacteria and plants. We have isolated mutant strains defective in the STA6 locus of the monocellular green alga Chlamydomonas reinhardtii that fail to accumulate starch and lack ADP-glucose pyrophosphorylase activity. We show that this locus encodes a 514-amino-acid polypeptide corresponding to a mature 50-kDa protein with homology to vascular plant ADP-glucose pyrophosphorylase small-subunit sequences. This gene segregates independently from the previously characterized STA1 locus that encodes the large 53-kDa subunit of the same heterotetramer enzyme. Because STA1 locus mutants have retained an AGPase but exhibit lower sensitivity to 3-phosphoglyceric acid activation, we suggest that the small and large subunits of the enzyme define, respectively, the catalytic and regulatory subunits of AGPase in unicellular green algae. We provide preliminary evidence that both the small-subunit mRNA abundance and enzyme activity, and therefore also starch metabolism, may be controlled by the circadian clock

    Starchless Mutants of Chlamydomonas reinhardtii Lack the Small Subunit of a Heterotetrameric ADP-Glucose Pyrophosphorylase

    No full text
    ADP-glucose synthesis through ADP-glucose pyrophosphorylase defines the major rate-controlling step of storage polysaccharide synthesis in both bacteria and plants. We have isolated mutant strains defective in the STA6 locus of the monocellular green alga Chlamydomonas reinhardtii that fail to accumulate starch and lack ADP-glucose pyrophosphorylase activity. We show that this locus encodes a 514-amino-acid polypeptide corresponding to a mature 50-kDa protein with homology to vascular plant ADP-glucose pyrophosphorylase small-subunit sequences. This gene segregates independently from the previously characterized STA1 locus that encodes the large 53-kDa subunit of the same heterotetramer enzyme. Because STA1 locus mutants have retained an AGPase but exhibit lower sensitivity to 3-phosphoglyceric acid activation, we suggest that the small and large subunits of the enzyme define, respectively, the catalytic and regulatory subunits of AGPase in unicellular green algae. We provide preliminary evidence that both the small-subunit mRNA abundance and enzyme activity, and therefore also starch metabolism, may be controlled by the circadian clock

    The Priming of Amylose Synthesis in Arabidopsis Leaves

    No full text
    We investigated the mechanism of amylose synthesis in Arabidopsis leaves using (14)C-labeling techniques. First, we tested the hypothesis that short malto-oligosaccharides (MOS) may act as primers for granule-bound starch synthase I. We found increased amylose synthesis in isolated starch granules supplied with ADP[(14)C]glucose (ADP[(14)C]Glc) and MOS compared with granules supplied with ADP[(14)C]Glc but no MOS. Furthermore, using a MOS-accumulating mutant (dpe1), we found that more amylose was synthesized than in the wild type, correlating with the amount of MOS in vivo. When wild-type and mutant plants were tested in conditions where both lines had similar MOS contents, no difference in amylose synthesis was observed. We also tested the hypothesis that branches of amylopectin might serve as the primers for granule-bound starch synthase I. In this model, elongated branches of amylopectin are subsequently cleaved to form amylose. We conducted pulse-chase experiments, supplying a pulse of ADP[(14)C]Glc to isolated starch granules or (14)CO(2) to intact plants, followed by a chase period in unlabeled substrate. We detected no transfer of label from the amylopectin fraction to the amylose fraction of starch either in isolated starch granules or in intact leaves, despite varying the time course of the experiments and using a mutant line (sex4) in which high-amylose starch is synthesized. We therefore find no evidence for amylopectin-primed amylose synthesis in Arabidopsis. We propose that MOS are the primers for amylose synthesis in Arabidopsis leaves

    STA11, a Chlamydomonas reinhardtii Locus Required for Normal Starch Granule Biogenesis, Encodes Disproportionating Enzyme. Further Evidence for a Function of α-1,4 Glucanotransferases during Starch Granule Biosynthesis in Green Algae

    No full text
    In Chlamydomonas reinhardtii, the presence of a defective STA11 locus results in significantly reduced granular starch deposition displaying major modifications in shape and structure. This defect simultaneously leads to the accumulation of linear malto-oligosaccharides (MOS). The mutants of STA11 were showed to lack d-enzyme, a plant α-1,4 glucanotransferase analogous to the Escherichia coli amylomaltase. We have cloned and characterized both the cDNA and gDNA corresponding to the C. reinhardtii d-enzyme. We now report allele-specific modifications of the d-enzyme gene in the mutants of STA11. These allele-specific modifications cosegregate with the corresponding sta11 mutations, thereby demonstrating that STA11 encodes d-enzyme. MOS production and starch accumulation were investigated during day and night cycles in wild-type and mutant C. reinhardtii cells. We demonstrate that in the algae MOS are produced during starch biosynthesis and degraded during the phases of net polysaccharide catabolism

    Growth Ring Formation in the Starch Granules of Potato Tubers

    No full text
    Starch granules from higher plants contain alternating zones of semicrystalline and amorphous material known as growth rings. The regulation of growth ring formation is not understood. We provide several independent lines of evidence that growth ring formation in the starch granules of potato (Solanum tuberosum) tubers is not under diurnal control. Ring formation is not abolished by growth in constant conditions, and ring periodicity and appearance are relatively unaffected by a change from a 24-h to a 40-h photoperiod, and by alterations in substrate supply to the tuber that are known to affect the diurnal pattern of tuber starch synthesis. Some, but not all, of the features of ring formation are consistent with the involvement of a circadian rhythm. Such a rhythm might operate by changing the relative activities of starch-synthesizing enzymes: Growth ring formation is disrupted in tubers with reduced activity of a major isoform of starch synthase. We suggest that physical as well as biological mechanisms may contribute to the control of ring formation, and that a complex interplay of several factors may by involved
    corecore