43 research outputs found
A visual exploration workflow as enabler for the exploitation of Linked Open Data
Abstract. Semantically annotating and interlinking Open Data results in Linked Open Data which concisely and unambiguously describes a knowledge domain. However, the uptake of the Linked Data depends on its usefulness to non-Semantic Web experts. Failing to support data consumers to understand the added-value of Linked Data and possible exploitation opportunities could inhibit its diffusion. In this paper, we propose an interactive visual workflow for discovering and ex-ploring Linked Open Data. We implemented the workflow considering academic library metadata and carried out a qualitative evaluation. We assessed the work-flow’s potential impact on data consumers which bridges the offer: published Linked Open Data; and the demand as requests for: (i) higher quality data; and (ii) more applications that re-use data. More than 70 % of the 34 test users agreed that the workflow fulfills its goal: it facilitates non-Semantic Web experts to un-derstand the potential of Linked Open Data.
Future intensification of precipitation and wind gust associated thunderstorms over Lake Victoria
Severe thunderstorms affect more than 30 million people living along the shores of Lake Victoria (East Africa). Thousands of fishers lose their lives on the lake every year. While deadly waves are assumed to be initiated by severe wind gusts, knowledge about thunderstorms is restricted to precipitation or environmental proxies. Here we use a regional climate model run at convection-permitting resolution to simulate both precipitation and wind gusts over Lake Victoria for a historical 10-year period. In addition, a pseudo global warming simulation provides insight into the region’s future climate. In this simulation, ERA5’s initial and boundary conditions are perturbed with atmospheric changes between 1995–2025 and 2070–2100, projected by CMIP6’s ensemble mean. It was found that future decreases in both mean precipitation and wind gusts over Lake Victoria can be attributed to a weaker mean mesoscale circulation that reduces the trigger for over-lake nighttime convection and decreases the mean wind shear. However, an intensification of extremes is projected for both over-lake precipitation and wind gusts. The observed 7 %K−1 Clausius–Clapeyron extreme precipitation scaling is ascribed to increased water vapor content and a compensation of weaker mesoscale circulations and stronger thunderstorm dynamics. More frequent wind gust extremes result from higher wind shear conditions and more compound thunderstorms with both intense rainfall and severe wind gusts. Overall, our study emphasizes Lake Victoria’s modulating role in determining regional current and future extremes, in addition to changes expected from the Clausius–Clapeyron relation
Subjective quality assessment of longer duration video sequences delivered over HTTP adaptive streaming to tablet devices
HTTP adaptive streaming facilitates video streaming to mobile devices connected through heterogeneous networks without the need for a dedicated streaming infrastructure. By splitting different encoded versions of the same video into small segments, clients can continuously decide which segments to download based on available network resources and device characteristics. These encoded versions can, for example, differ in terms of bitrate and spatial or temporal resolution. However, as a result of dynamically selecting video segments, perceived video quality can fluctuate during playback which will impact end-users' quality of experience. Subjective studies have already been conducted to assess the influence of video delivery using HTTP Adaptive Streaming to mobile devices. Nevertheless, existing studies are limited to the evaluation of short video sequences in controlled environments. Research has already shown that video duration and assessment environment influence quality perception. Therefore, in this article, we go beyond the traditional ways for subjective quality evaluation by conducting novel experiments on tablet devices in more ecologically valid testing environments using longer duration video sequences. As such, we want to mimic realistic viewing behavior as much as possible. Our results show that both video content and the range of quality switches significantly influence end-users' rating behavior. In general, quality level switches are only perceived in high motion sequences or in case switching occurs between high and low quality video segments. Moreover, we also found that video stallings should be avoided during playback at all times
The Multi-Satellite Environmental and Socioeconomic Predictors of Vector-Borne Diseases in African Cities:Malaria as an Example
Remote sensing has been used for decades to produce vector-borne disease risk maps aiming at better targeting control interventions. However, the coarse and climatic-driven nature of these maps largely hampered their use in the fight against malaria in highly heterogeneous African cities. Remote sensing now offers a large panel of data with the potential to greatly improve and refine malaria risk maps at the intra-urban scale. This research aims at testing the ability of different geospatial datasets exclusively derived from satellite sensors to predict malaria risk in two sub-Saharan African cities: Kampala (Uganda) and Dar es Salaam (Tanzania). Using random forest models, we predicted intra-urban malaria risk based on environmental and socioeconomic predictors using climatic, land cover and land use variables among others. The combination of these factors derived from different remote sensors showed the highest predictive power, particularly models including climatic, land cover and land use predictors. However, the predictive power remained quite low, which is suspected to be due to urban malaria complexity and malaria data limitations. While huge improvements have been made over the last decades in terms of remote sensing data acquisition and processing, the quantity and quality of epidemiological data are not yet sufficient to take full advantage of these improvements
Assessing the importance of audio/video synchronization for simultaneous translation of video sequences
Lip synchronization is considered a key parameter during interactive communication. In the case of video conferencing and television broadcasting, the differential delay between audio and video should remain below certain thresholds, as recommended by several standardization bodies. However, further research has also shown that these thresholds can be relaxed, depending on the targeted application and use case. In this article, we investigate the influence of lip sync on the ability to perform real-time language interpretation during video conferencing. Furthermore, we are also interested in determining proper lip sync visibility thresholds applicable to this use case. Therefore, we conducted a subjective experiment using expert interpreters, which were required to perform a simultaneous translation, and non-experts. Our results show that significant differences are obtained when conducting subjective experiments with expert interpreters. As interpreters are primarily focused on performing the simultaneous translation, lip sync detectability thresholds are higher compared with existing recommended thresholds. As such, primary focus and the targeted application and use case are important factors to be considered when selecting proper lip sync acceptability thresholds
Representation of precipitation and top-of-atmosphere radiation in a multi-model convection-permitting ensemble for the Lake Victoria Basin (East-Africa)
The CORDEX Flagship Pilot Study ELVIC (climate Extremes in the Lake VICtoria basin) was recently established to investigate how extreme weather events will evolve in this region of the world and to provide improved information for the climate impact community. Here we assess the added value of the convection-permitting scale simulations on the representation of moist convective systems over and around Lake Victoria. With this aim, 10 year present-day model simulations were carried out with five regional climate models at both PARameterized (PAR) scales (12–25 km) and Convection-Permitting (CP) scales (2.5–4.5 km), with COSMO-CLM, RegCM, AROME, WRF and UKMO. Most substantial systematic improvements were found in metrics related to deep convection. For example, the timing of the daily maximum in precipitation is systematically delayed in CP compared to PAR models, thereby improving the agreement with observations. The large overestimation in the total number of rainy events is alleviated in the CP models. Systematic improvements were found in the diurnal cycle in Top-Of-Atmosphere (TOA) radiation and in some metrics for precipitation intensity. No unanimous improvement nor deterioration was found in the representation of the spatial distribution of total rainfall and the seasonal cycle when going to the CP scale. Furthermore, some substantial biases in TOA upward radiative fluxes remain. Generally our analysis indicates that the representation of the convective systems is strongly improved in CP compared to PAR models, giving confidence that the models are valuable tools for studying how extreme precipitation events may evolve in the future in the Lake Victoria basin and its surroundings
COSMO-CLM regional climate simulations in the Coordinated Regional Climate Downscaling Experiment (CORDEX) framework: a review
In the last decade, the Climate Limited-area Modeling Community (CLM-Community) has contributed to the Coordinated Regional Climate Downscaling Experiment (CORDEX) with an extensive set of regional climate simulations. Using several versions of the COSMO-CLM-Community model, ERA-Interim reanalysis and eight global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) were dynamically downscaled with horizontal grid spacings of 0.44∘ (∼ 50 km), 0.22∘ (∼ 25 km), and 0.11∘ (∼ 12 km) over the CORDEX domains Europe, South Asia, East Asia, Australasia, and Africa. This major effort resulted in 80 regional climate simulations publicly available through the Earth System Grid Federation (ESGF) web portals for use in impact studies and climate scenario assessments. Here we review the production of these simulations and assess their results in terms of mean near-surface temperature and precipitation to aid the future design of the COSMO-CLM model simulations. It is found that a domain-specific parameter tuning is beneficial, while increasing horizontal model resolution (from 50 to 25 or 12 km grid spacing) alone does not always improve the performance of the simulation. Moreover, the COSMO-CLM performance depends on the driving data. This is generally more important than the dependence on horizontal resolution, model version, and configuration. Our results emphasize the importance of performing regional climate projections in a coordinated way, where guidance from both the global (GCM) and regional (RCM) climate modeling communities is needed to increase the reliability of the GCM–RCM modeling chain
Indirect effects of bear hunting : a review from Scandinavia
Harvest by means of hunting is a commonly used tool in large carnivore management. To evaluate the effects of harvest on populations, managers usually focus on numerical or immediate direct demographic effects of harvest mortality on a population's size and growth. However, we suggest that managers should also give consideration to indirect and potential evolutionary effects of hunting (e.g., the consequences of a change in the age, sex, and social structure), and their effects on population growth rate. We define “indirect effects” as hunting-induced changes in a population, including human-induced selection, that result in an additive change to the population growth rate “lambda” beyond that due to the initial offtake from direct mortality. We considered 4 major sources of possible indirect effects from hunting of bears: (1) changes to a population's age and sex structure, (2) changes to a population's social structure, (3) changes in individual behavior, and (4) human-induced selection. We identified empirically supported, as well as expected, indirect effects of hunting based primarily on >30 years of research on the Scandinavian brown bear (Ursus arctos) population. We stress that some indirect effects have been documented (e.g., habitat use and daily activity patterns of bears change when hunting seasons start, and changes in male social structure induce sexually selected infanticide and reduce population growth). Other effects may be more difficult to document and quantify in wild bear populations (e.g., how a younger age structure in males may lead to decreased offspring survival). We suggest that managers of bear and other large carnivore populations adopt a precautionary approach and assume that indirect effects do exist, have a potential impact on population structure, and, ultimately, may have an effect on population growth that differs from that predicted by harvest models based on direct effects alone