1,119 research outputs found

    Optical Albedo Theory of Strongly-Irradiated Giant Planets: The Case of HD 209458b

    Full text link
    We calculate a new suite of albedo models for close-in extrasolar giant planets and compare with the recent stringent upper limit for HD 209458b of Rowe et al. using MOST. We find that all models without scattering clouds are consistent with this optical limit. We explore the dependence on wavelength and waveband, metallicity, the degree of heat redistribution, and the possible presence of thermal inversions and find a rich diversity of behaviors. Measurements of transiting extrasolar giant planets (EGPs) at short wavelengths by MOST, Kepler, and CoRoT, as well as by proposed dedicated multi-band missions, can complement measurements in the near- and mid-IR using {\it Spitzer} and JWST. Collectively, such measurements can help determine metallicity, compositions, atmospheric temperatures, and the cause of thermal inversions (when they arise) for EGPs with a broad range of radii, masses, degrees of stellar insolation, and ages. With this paper, we reappraise and highlight the diagnostic potential of albedo measurements of hot EGPs shortward of \sim1.3 μ\mum.Comment: 6 pages, 1 table, 1 color figure; accepted to the Astrophysical Journa

    Radiative Heat Transfer between Neighboring Particles

    Full text link
    The near-field interaction between two neighboring particles is known to produce enhanced radiative heat transfer. We advance in the understanding of this phenomenon by including the full electromagnetic particle response, heat exchange with the environment, and important radiative corrections both in the distance dependence of the fields and in the particle absorption coefficients. We find that crossed terms of electric and magnetic interactions dominate the transfer rate between gold and SiC particles, whereas radiative corrections reduce it by several orders of magnitude even at small separations. Radiation away from the dimer can be strongly suppressed or enhanced at low and high temperatures, respectively. These effects must be taken into account for an accurate description of radiative heat transfer in nanostructured environments.Comment: 22 pages, 9 figures, fully self-contained derivation

    Epsilons Near Zero limits in the Mie scattering theory

    Full text link
    The classical Mie theory - electromagnetic radiation scattering by the homogeneous spherical particles - is considered in the epsilon near zero limits separately for the materials of the particles and the surrounding medium. The maxima of a scattered transverse electrical (TE) field for the surrounding medium materials with the epsilon near zero limits are revealed. The effective multipole polarizabilities of the corresponding scattering particles are investigated. The possibility to achieve magnetic dipole resonance and accordingly to construct metamaterials with negative refractive index for the aggregates spherical particles in surrounding medium with the epsilon near zero limits is considered.Comment: 8 pages, 6 figure

    Universality in scattering by large-scale potential fluctuations in two-dimensional conductors

    Full text link
    We study electron propagation through a random array of rare, opaque and large (compared the de Broglie wavelength of electrons) scatterers. It is shown that for any convex scatterer the ratio of the transport to quantum lifetimes \eta=\tau_{tr}/\tau_{tot}$ does not depend on the shape of the scatterer but only on whether scattering is specular or diffuse and on the spatial dimensionality (D). In particular, for specular scattering, \eta is a universal constant determined only by the dimensionality of the system: \eta = 2 for D = 3 and \eta = 3/2 for D = 2. The crossover between classical and quantum regimes of scattering is discussed.Comment: 4 pages, 3 figures, submitted to PR

    Vacuum friction in rotating particles

    Get PDF
    We study the frictional torque acting on particles rotating in empty space. At zero temperature, vacuum friction transforms mechanical energy into light emission and produces particle heating. However, particle cooling relative to the environment occurs at finite temperatures and low rotation velocities. Radiation emission is boosted and its spectrum significantly departed from a hot-body emission profile as the velocity increases. Stopping times ranging from hours to billions of years are predicted for materials, particle sizes, and temperatures accessible to experiment. Implications for the behavior of cosmic dust are discussed.Comment: 4 figures, 10 pages, includes paper and supplementary information in the appendi

    Quantum limited particle sensing in optical tweezers

    Get PDF
    Particle sensing in optical tweezers systems provides information on the position, velocity and force of the specimen particles. The conventional quadrant detection scheme is applied ubiquitously in optical tweezers experiments to quantify these parameters. In this paper we show that quadrant detection is non-optimal for particle sensing in optical tweezers and propose an alternative optimal particle sensing scheme based on spatial homodyne detection. A formalism for particle sensing in terms of transverse spatial modes is developed and numerical simulations of the efficacy of both quadrant and spatial homodyne detection are shown. We demonstrate that an order of magnitude improvement in particle sensing sensitivity can be achieved using spatial homodyne over quadrant detection.Comment: Submitted to Biophys

    Testing spontaneous localization theories with matter-wave interferometry

    Full text link
    We propose to test the theory of continuous spontaneous localization (CSL) in an all-optical time-domain Talbot-Lau interferometer for clusters with masses exceeding 1000000 amu. By assessing the relevant environmental decoherence mechanisms, as well as the growing size of the particles relative to the grating fringes, we argue that it will be feasible to test the quantum superposition principle in a mass range excluded by recent estimates of the CSL effect.Comment: 4 pages, 3 figures; corresponds to published versio

    Fast outflow of neutral hydrogen in the radio galaxy 3C293

    Full text link
    We report the detection of very broad HI absorption against the central regions of the radio galaxy 3C293. The absorption profile, obtained with the Westerbork Synthesis Radio Telescope, has a full width at zero intensity of about 1400 km/s and most of this broad absorption (~1000 km/s) is blueshifted relative to the systemic velocity. This absorption represents a fast outflow of neutral gas from the central regions of this AGN. Possible causes for such an outflow are discussed. We favour the idea that the interaction between the radio jet and the rich ISM produces this outflow. Some of the implications of this scenario are considered.Comment: 11 pages, 4 Figures To be published in: Astrophysical Journal Letter

    Infrared dust emission in the outer disk of M51

    Get PDF
    We examine faint infrared emission features detected in Spitzer Space Telescope images of M51, which are associated with atomic hydrogen in the outer disk and tidal tail at R greater than R_25 (4.9', ~14 kpc at d=9.6 Mpc). The infrared colors of these features are consistent with the colors of dust associated with star formation in the bright disk. However, the star formation efficiency (as a ratio of star formation rate to neutral gas mass) implied in the outer disk is lower than that in the bright disk of M51 by an order of magnitude, assuming a similar relationship between infrared emission and star formation rate in the inner and outer disks.Comment: 13 pages in manuscript form, 2 figures; download PDF of manuscript with original-resolution Figure 1 at http://www.eg.bucknell.edu/physics/thornley/thornleym51.pd

    Cooperative scattering and radiation pressure force in dense atomic clouds

    Full text link
    We consider the collective scattering by a cloud of NN two-level atoms driven by an uniform radiation field. Dense atomic clouds can be described by a continuous density and the problem reduces to deriving the spectrum of the atom-atom coupling operator. For clouds much larger than the optical wavelength, the spectrum is treated as a continuum, and analytical expressions for several macroscopic quantities, such as scattered radiation intensity and radiation pressure force, are derived. The analytical results are then compared to the exact NN-body solution and with those obtained assuming a symmetric timed Dicke state. In contrast with the symmetric timed Dicke state, our calculations takes account of the back action of the atoms on the driving field leading to phase shifts due to the finite refraction of the cloud
    corecore