17 research outputs found

    High-resolution imaging and single-cell analysis via laser ablation-inductively coupled plasma-mass spectrometry for the determination of membranous receptor expression levels in breast cancer cell lines using receptor-specific hybrid tracers

    No full text
    This work evaluates the possibility of placement of high-resolution imaging and single-cell analysis via laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) within precision medicine by assessing the suitability of LA-ICP-MS as a micro-analytical technique for the localization and quantification of membranous receptors in heterogeneous cell samples that express both the membrane-bound receptors C-X-C chemokine receptor type 4 (CXCR4) and epidermal growth factor receptor (EGFR). Staining of the breast cancer cell lines MDA-MB-231 X4 and MDA-MB-468 was achieved using receptorspecific hybrid tracers, containing both a fluorophore and a DTPA single-lanthanide chelate. Prior to LA-ICP-MS imaging, fluorescence confocal microscopy (FCM) imaging was performed to localize the receptors, hereby enabling direct comparison. Based on the different expression levels of CXCR4 and EGFR, a distinction could be made between the cell lines using both imaging modalities. Furthermore, FCM and LA-ICP-MS demonstrated complementary characteristics, as a more distinct discrimination could be made between both cell lines based on the EGFR-targeting hybrid tracer via LA-ICP-MS, due to the intrinsic CXCR4-related green fluorescent protein (GFP) signal present in the MDA-MB-231 X4 cells. Employing state-of-the-art LA-ICP-MS instrumentation in bidirectional area scanning mode for subcellular imaging of MDA-MB-231 X4 cells enabled the specific binding of the CXCR4-targeting hybrid tracer to the cell membrane to be clearly demonstrated. The stretching of cells over the glass substrate led to a considerably higher signal response for pixels at the cell edges, relative to the more central pixels. The determination of the expression levels of CXCR4 and EGFR for the MDA-MB-468 cell line was performed using LA-ICP-MS single-cell analysis (sc-LA-ICP-MS) and external calibration, based on the quantitative ablation of Ho-spiked dried gelatin droplet standards. Additionally, a second calibration approach was applied based on spot ablation of highly homogeneous dried gelatin gels in combination with the determination of the ablated volume using atomic force microscopy (AFM) and yielded results which were in good agreement with the expression levels determined via flow cytometry (FC) and mass cytometry (MC). Hybrid tracers enable a direct comparison between (i) FCM and LA-ICP-MS imaging for the evaluation of the microscopic binding pattern and between (ii) FC, MC and sc-LA-ICP-MS for the quantification of receptor expression levels in single cells. (C) 2019 Elsevier B.V. All rights reserved

    In vivo stability of supramolecular host–guest complexes monitored by dual-isotope multiplexing in a pre-targeting model of experimental liver radioembolization

    No full text
    Introduction: Cyclodextrin (CD)-based supramolecular interactions have been proposed as nanocarriers for drug delivery. We previously explored the use of these supramolecular interactions to perform targeted hepatic radioembolization. In a two-step procedure the appropriate location of the diagnostic pre-targeting vector can first be confirmed, after which the therapeutic vector will be targeted through multivalent host–guest interactions. Such a procedure would prevent therapeutic errors that come from a mismatch between diagnostic and therapeutic procedures. In the current study we explored the use of dual-isotope imaging to assess the in vivo stability of the formed complex and individual components. Methods: Dual-isotope imaging of the host and guest vectors was performed after labeling of the pre-targeted guest vector, being adamantane (Ad) functionalized macro-aggregated albumin (MAA) particles, with technetium-99 m (99mTc-MAA-Ad). The host vector, Cy50.5CD9PIBMA39, was labeled with indium-111 (111In-Cy50.5CD9PIBMA39). The in situ stability of both the individual vectors and the resulting [MAA-Ad–111In-Cy50.5CD9PIBMA39] complexes was studied over 44 h at 37 °C in a serum protein-containing buffer. In vivo, the host vector 111In-Cy50.5CD9PIBMA39 was administered two hours after local deposition of 99mTc-MAA-Ad in mice. Dual-isotope SPECT imaging and quantitative biodistribution studies were performed between 2 and 44 h post intravenous host vector administration. Results: The individual vectors portrayed <5% dissociation of the radioisotope over the course of 20 h. Dissociation of [MAA-Ad–111In-Cy50.5CD9PIBMA39] complexes remained within a 10–20% range after incubation in serum. In vivo dual-isotope SPECT imaging of host–guest interactions revealed co-localization of the tracer components. Quantitative assessment of the biodistribution revealed that the hepatic accumulation of the host vector nearly doubled between 2 h and 44 h post-injection (from 14.9 ± 6.1%ID/g to 26.2 ± 2.1%ID/g). Conclusions: Assessment of intra-hepatic host–guest complexation was successfully achieved using dual isotope multiplexing, underlining the complex stability that was found in situ (up to 44 h in serum). Overall, the results obtained in this study highlight the potential of supramolecular chemistry as a versatile platform that could advance the field of nanomedicine

    In vivo stability of supramolecular host–guest complexes monitored by dual-isotope multiplexing in a pre-targeting model of experimental liver radioembolization

    No full text
    Introduction: Cyclodextrin (CD)-based supramolecular interactions have been proposed as nanocarriers for drug delivery. We previously explored the use of these supramolecular interactions to perform targeted hepatic radioembolization. In a two-step procedure the appropriate location of the diagnostic pre-targeting vector can first be confirmed, after which the therapeutic vector will be targeted through multivalent host–guest interactions. Such a procedure would prevent therapeutic errors that come from a mismatch between diagnostic and therapeutic procedures. In the current study we explored the use of dual-isotope imaging to assess the in vivo stability of the formed complex and individual components. Methods: Dual-isotope imaging of the host and guest vectors was performed after labeling of the pre-targeted guest vector, being adamantane (Ad) functionalized macro-aggregated albumin (MAA) particles, with technetium-99 m (99mTc-MAA-Ad). The host vector, Cy50.5CD9PIBMA39, was labeled with indium-111 (111In-Cy50.5CD9PIBMA39). The in situ stability of both the individual vectors and the resulting [MAA-Ad–111In-Cy50.5CD9PIBMA39] complexes was studied over 44 h at 37 °C in a serum protein-containing buffer. In vivo, the host vector 111In-Cy50.5CD9PIBMA39 was administered two hours after local deposition of 99mTc-MAA-Ad in mice. Dual-isotope SPECT imaging and quantitative biodistribution studies were performed between 2 and 44 h post intravenous host vector administration. Results: The individual vectors portrayed 111In-Cy50.5CD9PIBMA39] complexes remained within a 10–20% range after incubation in serum. In vivo dual-isotope SPECT imaging of host–guest interactions revealed co-localization of the tracer components. Quantitative assessment of the biodistribution revealed that the hepatic accumulation of the host vector nearly doubled between 2 h and 44 h post-injection (from 14.9 ± 6.1%ID/g to 26.2 ± 2.1%ID/g). Conclusions: Assessment of intra-hepatic host–guest complexation was successfully achieved using dual isotope multiplexing, underlining the complex stability that was found in situ (up to 44 h in serum). Overall, the results obtained in this study highlight the potential of supramolecular chemistry as a versatile platform that could advance the field of nanomedicine.</p

    Image-Guided Surgery: Are We Getting the Most Out of Small-Molecule Prostate-Specific-Membrane-Antigen-Targeted Tracers?

    Get PDF
    Expressed on virtually all prostate cancers and their metastases, the transmembrane protein prostate-specific membrane antigen (PSMA) provides a valuable target for the imaging of prostate cancer. Not only does PSMA provide a target for noninvasive diagnostic imaging, e.g., PSMA-positron emission tomography (PSMA-PET), it can also be used to guide surgical resections of PSMA-positive lesions. The latter characteristic has led to the development of a plethora of PSMA-targeted tracers, i.e., radiolabeled, fluorescent, or hybrid. With image-guided surgery applications in mind, this review discusses these compounds based on clinical need. Here, the focus is on the chemical aspects (e.g., imaging label, spacer moiety, and targeting vector) and their impact on in vitro and in vivo tracer characteristics (e.g., affinity, tumor uptake, and clearance pattern)

    Size and affinity kinetics of nanobodies influence targeting and penetration of solid tumours

    No full text
    International audienceA compounds' intratumoural distribution is an important determinant for the effectiveness of molecular therapy or imaging. Antibodies (Abs), though often used in the design of targeted compounds, struggle to achieve homogenous distribution due to their large size and bivalent binding mechanism. In contrast, smaller compounds like nanobodies (Nbs) are expected to distribute more homogenously, though this has yet to be demonstrated in vivo at the microscopic level. We propose an intravital approach to evaluate the intratumoural distribution of different fluorescently labeled monomeric and dimeric Nb tracers and compare this with a monoclonal antibody (mAb).Monovalent and bivalent formats of the anti-HER2 (2Rb17c and 2Rb17c-2Rb17c) and control (R3B23 and R3B23-R3B23) Nbs, as well as the dimeric monovalent Nb 2Rb17c-R3B23 were generated and fluorescently labeled with a Cy5 fluorophore. The mAb trastuzumab-Cy5 was also prepared. Whole-body biodistribution of all constructs was investigated in mice bearing subcutaneous xenografts (HER2+ SKOV3) using in vivo epi-fluorescence imaging. Next, for intravital experiments, GFP-expressing SKOV3 cells were grown under dorsal window chambers on athymic nude mice (n = 3/group), and imaged under a fluorescence stereo microscope immediately after intravenous injection of the tracers. Fluorescent images within the tumour were acquired over the initial 20 min after injection and later, single images were taken at 1, 3 and 24 h post-injection. Additionally, 2-photon microscopy was used to investigate the colocalization of GFP (tumour cells) and Cy5 fluorescence (tracers) at higher resolution.Whole-body images showed rapid renal clearance of all Nbs, and fast tumour targeting for the specific Nbs. Specific tumour uptake of the mAb could only be clearly distinguished from background after several hours. Intravital imaging revealed that monomeric Nb tracers accumulated rapidly and distribute homogenously in the tumour mere minutes after intravenous injection. The dimeric compounds initially achieve lower fluorescent intensities than the monomeric. Furthermore, whereas the HER2-specific dimeric bivalent compound remains closely associated to the blood vessels over 24 h, the HER2-specific dimeric monovalent tracer achieves a more homogenous tumour distribution from 1 h post-injection onwards. Non-specific tracers were not retained in the tumour. Trastuzumab had the most heterogenous intratumoural distribution of all evaluated compounds, while -due to the long blood retention- achieving the highest overall tumour uptake at 24 h post-injection.In conclusion, monomeric Nbs very quickly and homogenously distribute through tumour tissue, at a rate significantly greater than dimeric Nbs and mAbs. This underlines the potential of monomeric Nb tracers and therapeutics in molecular imaging and targeted therapies

    Size and affinity kinetics of nanobodies influence targeting and penetration of solid tumours

    No full text
    A compound's intratumoural distribution is an important determinant for the effectiveness of molecular therapy or imaging. Antibodies (Abs), though often used in the design of targeted compounds, struggle to achieve a homogenous distribution due to their large size and bivalent binding mechanism. In contrast, smaller compounds like nanobodies (Nbs) are expected to distribute more homogenously, though this has yet to be demonstrated in vivo at the microscopic level. We propose an intravital approach to evaluate the intratumoural distribution of different fluorescently labeled monomeric and dimeric Nb tracers and compare this with a monoclonal antibody (mAb). Monomeric and dimeric formats of the anti-HER2 (2Rb17c and 2Rb17c-2Rb17c) and control (R3B23 and R3B23-R3B23) Nb, as well as the dimeric monovalent Nb 2Rb17c-R3B23 were generated and fluorescently labeled with a Cy5 fluorophore. The mAb trastuzumab-Cy5 was also prepared. Whole-body biodistribution of all constructs was investigated in mice bearing subcutaneous xenografts (HER2+ SKOV3) using in vivo epi-fluorescence imaging. Next, for intravital experiments, GFP-expressing SKOV3 cells were grown under dorsal window chambers on athymic nude mice (n = 3/group), and imaged under a fluorescence stereo microscope immediately after intravenous injection of the tracers. Consecutive fluorescence images within the tumour were acquired over the initial 20 min after injection and later, single images were taken at 1, 3 and 24 h post-injection. Additionally, two-photon microscopy was used to investigate the colocalization of GFP (tumour cells) and Cy5 fluorescence (tracers) at higher resolution. Whole-body images showed rapid renal clearance of all Nbs, and fast tumour targeting for the specific Nbs. Specific tumour uptake of the mAb could only be clearly distinguished from background after several hours. Intravital imaging revealed that monomeric Nb tracers accumulated rapidly and distributed homogenously in the tumour mere minutes after intravenous injection. The dimeric compounds initially achieved lower fluorescence intensities than the monomeric. Furthermore, whereas the HER2-specific dimeric bivalent compound remained closely associated to the blood vessels over 24 h, the HER2-specific dimeric monovalent tracer achieved a more homogenous tumour distribution from 1 h post-injection onwards. Non-specific tracers were not retained in the tumour. Trastuzumab had the most heterogenous intratumoural distribution of all evaluated compounds, while -due to the long blood retention- achieving the highest overall tumour uptake at 24 h post-injection. In conclusion, monomeric Nbs very quickly and homogenously distribute through tumour tissue, at a rate significantly greater than dimeric Nbs and mAbs. This underlines the potential of monomeric Nb tracers and therapeutics in molecular imaging and targeted therapies.status: publishe

    Advancing intraoperative magnetic tracing using 3D freehand magnetic particle imaging

    Get PDF
    Purpose: Sentinel lymph node biopsy is a routine procedure for nodal staging in penile cancer. Most commonly, this procedure is guided by radioactive tracers, providing various forms of preoperative and intraoperative guidance. This is further extended with fluorescence imaging using hybrid radioactive–fluorescence tracers. Alternatively, a magnetic-based approach has become available using superparamagnetic iron-oxide nanoparticles (SPIONs). This study investigates a novel freehand magnetic particle imaging and navigation modality (fhMPI) for intraoperative localization, along with a hybrid approach, combining magnetic and fluorescence guidance. Materials and methods: The fhMPI set-up was built with a surgical navigation device, optical tracking system and magnetometer probe. A dedicated reconstruction software based on a look-up-table method was used to reconstruct a superficial 3D volume of the SPION distribution in tissue. For fluorescence guidance, indocyanine green (ICG) was added to the SPIONs. The fhMPI modality was characterized in phantoms, ex vivo human skin and in vivo porcine surgery. Results: Phantom and human skin explants illustrated that the current fhMPI modality had a sensitivity of 2.2 × 10–2 mg/mL SPIONs, a resolving power of at least 7 mm and a depth penetration up to 1.5 cm. Evaluation during porcine surgery showed that fhMPI allowed for an augmented reality image overlay of the tracer distribution in tissue, as well as 3D virtual navigation. Besides, using the hybrid approach, fluorescence imaging provided a visual confirmation of localized nodes. Conclusion: fhMPI is feasible in vivo, providing 3D imaging and navigation for magnetic nanoparticles in the operating room, expanding the guidance possibilities during magnetic sentinel lymph node procedures. Furthermore, the integration of ICG provides the ability to visually refine and confirm correct localization. Further clinical evaluation should verify these findings in human patients as well
    corecore