104 research outputs found

    Experiment for transient effects of sudden catastrophic loss of vacuum on a scaled superconducting radio frequency cryomodule

    Full text link
    Safe operation of superconducting radio frequency (SRF) cavities require design consideration of a sudden catastrophic loss of vacuum (SCLV) adjacent with liquid helium (LHe) vessels and subsequent dangers. An experiment is discussed to test the longitudinal effects of SCLV along the beam line of a string of scaled SRF cavities. Each scaled cavity includes one segment of beam tube within a LHe vessel containing 2 K saturated LHe, and a riser pipe connecting the LHe vessel to a common gas header. At the beam tube inlet is a fast acting solenoid valve to simulate SCLV and a high/low range orifice plate flow-meter to measure air influx to the cavity. The gas header exit also has an orifice plate flow-meter to measure helium venting the system at the relief pressure of 0.4 MPa. Each cavity is instrumented with Validyne pressure transducers and Cernox thermometers. The purpose of this experiment is to quantify the time required to spoil the beam vacuum and the effects of transient heat and mass transfer on the helium system. Heat transfer data is expected to reveal a longitudinal effect due to the geometry of the experiment. Details of the experimental design criteria and objectives are presented.Comment: 8 pp. Cryogenic Engineering Conference and International Cryogenic Materials Conference CEC-ICMC. 13-17 June 2011. Spokane, Washingto

    Dose-Response of Aerobic Exercise on Cognition: A Community-Based, Pilot Randomized Controlled Trial

    Get PDF
    Epidemiological studies suggest a dose-response relationship exists between physical activity and cognitive outcomes. However, no direct data from randomized trials exists to support these indirect observations. The purpose of this study was to explore the possible relationship of aerobic exercise dose on cognition. Underactive or sedentary participants without cognitive impairment were randomized to one of four groups: no-change control, 75, 150, and 225 minutes per week of moderate-intensity semi-supervised aerobic exercise for 26-weeks in a community setting. Cognitive outcomes were latent residual scores derived from a battery of 16 cognitive tests: Verbal Memory, Visuospatial Processing, Simple Attention, Set Maintenance and Shifting, and Reasoning. Other outcome measures were cardiorespiratory fitness (peak oxygen consumption) and measures of function functional health. In intent-to-treat (ITT) analyses (n = 101), cardiorespiratory fitness increased and perceived disability decreased in a dose-dependent manner across the 4 groups. No other exercise-related effects were observed in ITT analyses. Analyses restricted to individuals who exercised per-protocol (n = 77) demonstrated that Simple Attention improved equivalently across all exercise groups compared to controls and a dose-response relationship was present for Visuospatial Processing. A clear dose-response relationship exists between exercise and cardiorespiratory fitness. Cognitive benefits were apparent at low doses with possible increased benefits in visuospatial function at higher doses but only in those who adhered to the exercise protocol. An individual’s cardiorespiratory fitness response was a better predictor of cognitive gains than exercise dose (i.e., duration) and thus maximizing an individual’s cardiorespiratory fitness may be an important therapeutic target for achieving cognitive benefits

    What is Minimal Model of 3He Adsorbed on Graphite? -Importance of Density Fluctuations in 4/7 Registered Solid -

    Full text link
    We show theoretically that the second layer of 3He adsorbed on graphite and solidified at 4/7 of the first-layer density is close to the fluid-solid boundary with substantial density fluctuations on the third layer. The solid shows a translational symmetry breaking as in charge-ordered insulators of electronic systems. We construct a minimal model beyond the multiple-exchange Heisenberg model. An unexpectedly large magnetic field required for the measured saturation of magnetization is well explained by the density fluctuations. The emergence of quantum spin liquid is understood from the same mechanism as in the Hubbard model and in \kappa-(ET)_2Cu_2(CN)_3 near the Mott transitions.Comment: 9 pages, 5 figure

    Repeatability of Cryogenic Multilayer Insulation

    Get PDF
    Due to the variety of requirements across aerospace platforms, and one off projects, the repeatability of cryogenic multilayer insulation has never been fully established. The objective of this test program is to provide a more basic understanding of the thermal performance repeatability of MLI systems that are applicable to large scale tanks. There are several different types of repeatability that can be accounted for: these include repeatability between multiple identical blankets, repeatability of installation of the same blanket, and repeatability of a test apparatus. The focus of the work in this report is on the first two types of repeatability. Statistically, repeatability can mean many different things. In simplest form, it refers to the range of performance that a population exhibits and the average of the population. However, as more and more identical components are made (i.e. the population of concern grows), the simple range morphs into a standard deviation from an average performance. Initial repeatability testing on MLI blankets has been completed at Florida State University. Repeatability of five GRC provided coupons with 25 layers was shown to be +/- 8.4 whereas repeatability of repeatedly installing a single coupon was shown to be +/- 8.0. A second group of 10 coupons have been fabricated by Yetispace and tested by Florida State University, through the first 4 tests, the repeatability has been shown to be +/- 16. Based on detailed statistical analysis, the data has been shown to be statistically significant

    A community-based approach to trials of aerobic exercise in aging and Alzheimer’s disease

    Get PDF
    The benefits of exercise for aging have received considerable attention in both the popular and academic press. The putative benefits of exercise for maximizing cognitive function and supporting brain health have great potential for combating Alzheimer’s disease (AD). Aerobic exercise offers a low-cost, low-risk intervention that is widely available and may have disease modifying effects. Demonstrating aerobic exercise alters the AD process would have enormous public health implications. The purpose of this paper is to a report the protocol of a current, community-based pilot study of aerobic exercise for AD to guide future investigation. This manuscript provides 1) an overview of possible benefits of exercise in those with dementia, 2) a rationale and recommendations for implementation of a community-based approach, 3) recommendation for implementation of similar study protocols, 4) unique challenges in conducting an exercise trial in AD

    Effect of aerobic exercise on amyloid accumulation in preclinical Alzheimer’s: A 1-year randomized controlled trial

    Get PDF
    Background Our goal was to investigate the role of physical exercise to protect brain health as we age, including the potential to mitigate Alzheimer’s-related pathology. We assessed the effect of 52 weeks of a supervised aerobic exercise program on amyloid accumulation, cognitive performance, and brain volume in cognitively normal older adults with elevated and sub-threshold levels of cerebral amyloid as measured by amyloid PET imaging. Methods and findings This 52-week randomized controlled trial compared the effects of 150 minutes per week of aerobic exercise vs. education control intervention. A total of 117 underactive older adults (mean age 72.9 [7.7]) without evidence of cognitive impairment, with elevated (n = 79) or subthreshold (n = 38) levels of cerebral amyloid were randomized, and 110 participants completed the study. Exercise was conducted with supervision and monitoring by trained exercise specialists. We conducted 18F-AV45 PET imaging of cerebral amyloid and anatomical MRI for whole brain and hippocampal volume at baseline and Week 52 follow-up to index brain health. Neuropsychological tests were conducted at baseline, Week 26, and Week 52 to assess executive function, verbal memory, and visuospatial cognitive domains. Cardiorespiratory fitness testing was performed at baseline and Week 52 to assess response to exercise. The aerobic exercise group significantly improved cardiorespiratory fitness (11% vs. 1% in the control group) but there were no differences in change measures of amyloid, brain volume, or cognitive performance compared to control. Conclusions Aerobic exercise was not associated with reduced amyloid accumulation in cognitively normal older adults with cerebral amyloid. In spite of strong systemic cardiorespiratory effects of the intervention, the observed lack of cognitive or brain structure benefits suggests brain benefits of exercise reported in other studies are likely to be related to non-amyloid effects

    Normal fluid eddies in the thermal counterflow past a cylinder

    Get PDF
    A recent Particle Image Velocimetry (PIV) experiment in He II counterflow around a cylindrical obstacle showed the existence of apparently stationary normal fluid ddies both downstream (at the rear) and upstream (in front) of the cylinder. This rather surprising result does not have an analogue in experimental observations of classical fluid flows. We suggest that the explanation for the apparent stability of such eddies can be provided entirely from the viewpoint of classical fluid dynamics. We also discuss a possible connection between the emergence of the normal fluid eddies and the polarization of the vortex tangle in superfluid.Comment: submitte

    Parity violating neutron spin rotation in 4He and H

    Get PDF
    The weak interaction between nucleons leads to parity violation in various reaction observables. Neutron spin rotation, the rotation of the plane of polarization of a transversely polarized neutron beam passing through unpolarized matter, is an especially clear example of a breakdown in mirror symmetry. The Neutron Spin Rotation (NSR) Collaboration is engaged in an experimental program to observe parity-odd neutron spin rotation. We recently completed the first phase of an experiment to measure parity violating neutron spin rotation in 4He. Our result for the neutron spin rotation angle per unit length in 4He, dφ/dz = (+1.7 ± 9.1(stat.) ± 1.4(sys.)) × 10−7 rad/m, is the most sensitive search for neutron weak optical activity yet performed and represents a significant advance in precision in comparison to past measurements in heavy nuclei. This experiment was performed at the NG-6 slow neutron beamline at the National Institute of Standards and Technology (NIST) Center for Neutron Research. The systematic uncertainty is small enough to proceed to the second phase of the 4He measurement at the new NG-C slow neutron beamline under construction at NIST. The projected intensity of this beam is high enough to see parity odd neutron spin rotation in 4He and to seriously consider a future experiment to measure neutron spin rotation in hydrogen

    Strange Attractors in Dissipative Nambu Mechanics : Classical and Quantum Aspects

    Full text link
    We extend the framework of Nambu-Hamiltonian Mechanics to include dissipation in R3R^{3} phase space. We demonstrate that it accommodates the phase space dynamics of low dimensional dissipative systems such as the much studied Lorenz and R\"{o}ssler Strange attractors, as well as the more recent constructions of Chen and Leipnik-Newton. The rotational, volume preserving part of the flow preserves in time a family of two intersecting surfaces, the so called {\em Nambu Hamiltonians}. They foliate the entire phase space and are, in turn, deformed in time by Dissipation which represents their irrotational part of the flow. It is given by the gradient of a scalar function and is responsible for the emergence of the Strange Attractors. Based on our recent work on Quantum Nambu Mechanics, we provide an explicit quantization of the Lorenz attractor through the introduction of Non-commutative phase space coordinates as Hermitian N×N N \times N matrices in R3 R^{3}. They satisfy the commutation relations induced by one of the two Nambu Hamiltonians, the second one generating a unique time evolution. Dissipation is incorporated quantum mechanically in a self-consistent way having the correct classical limit without the introduction of external degrees of freedom. Due to its volume phase space contraction it violates the quantum commutation relations. We demonstrate that the Heisenberg-Nambu evolution equations for the Quantum Lorenz system give rise to an attracting ellipsoid in the 3N23 N^{2} dimensional phase space.Comment: 35 pages, 4 figures, LaTe
    • …
    corecore