57 research outputs found

    The Role of the CD4 Receptor versus HIV Coreceptors in Envelope-Mediated Apoptosis in Peripheral Blood Mononuclear Cells

    Get PDF
    AbstractWe examined the role of CD4, CXCR4, and CCR5 in HIV envelope-mediated apoptosis by measuring the response of activated PBMCs to recombinant envelope proteins derived from CXCR4- and CCR5-utilizing viruses. Apoptosis of T cells was assessed by annexin-V staining and TdT-mediated dUTP-biotin nick-end labeling. Treatment of CCR5Δ32 homozygote PBMCs with a CCR5-specific envelope induced apoptosis in T cells, demonstrating that envelope–CD4 interactions are sufficient to induce apoptosis. However, a CXCR4-specific envelope induced higher levels of apoptosis than a CCR5-specific envelope, suggesting that envelope-mediated apoptosis can be enhanced by envelope–CXCR4 interactions. We conclude that envelope can induce apoptosis in T cells independently of the coreceptor specificity of a given envelope, or the expression profile of CXCR4 or CCR5 on a target cell. However, envelope–coreceptor interactions, and in particular, envelope–CXCR4 interactions, can contribute to this process

    A sequence variant at 4p16.3 confers susceptibility to urinary bladder cancer

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldPreviously, we reported germline DNA variants associated with risk of urinary bladder cancer (UBC) in Dutch and Icelandic subjects. Here we expanded the Icelandic sample set and tested the top 20 markers from the combined analysis in several European case-control sample sets, with a total of 4,739 cases and 45,549 controls. The T allele of rs798766 on 4p16.3 was found to associate with UBC (odds ratio = 1.24, P = 9.9 x 10(-12)). rs798766 is located in an intron of TACC3, 70 kb from FGFR3, which often harbors activating somatic mutations in low-grade, noninvasive UBC. Notably, rs798766[T] shows stronger association with low-grade and low-stage UBC than with more aggressive forms of the disease and is associated with higher risk of recurrence in low-grade stage Ta tumors. The frequency of rs798766[T] is higher in Ta tumors that carry an activating mutation in FGFR3 than in Ta tumors with wild-type FGFR3. Our results show a link between germline variants, somatic mutations of FGFR3 and risk of UBC.info:eu-repo/grantAgreement/EC/FP7/21807

    Social media and sensemaking patterns in new product development: demystifying the customer sentiment

    Get PDF
    Artificial intelligence by principle is developed to assist but also support decision making processes. In our study, we explore how information retrieved from social media can assist decision-making processes for new product development (NPD). We focus on consumers’ emotions that are expressed through social media and analyse the variations of their sentiments in all the stages of NPD. We collect data from Twitter that reveal consumers’ appreciation of aspects of the design of a newly launched model of an innovative automotive company. We adopt the sensemaking approach coupled with the use of fuzzy logic for text mining. This combinatory methodological approach enables us to retrieve consensus from the data and to explore the variations of sentiments of the customers about the product and define the polarity of these emotions for each of the NPD stages. The analysis identifies sensemaking patterns in Twitter data and explains the NPD process and the associated steps where the social interactions from customers can have an iterative role. We conclude the paper by outlining an agenda for future research in the NPD process and the role of the customer opinion through sensemaking mechanisms

    Structure and evolution of the 4.5-5S ribosomal RNA intergenic region from Glycine max (soya bean).

    No full text
    The nucleotide sequence for the 4.5-5S ribosomal DNA region from the chloroplastids of soya beans was determined as the basis of further comparative studies on the structure and evolution of this intergenic region. Comparisons with other plant sequences as well as equivalent sequences in eubacteria suggest that the longer internal transcribed spacer regions of plants have evolved, at least in part, by DNA sequence duplications and that the presence of the 4.5S rRNA in chloroplast may result from the accidental acquisition of a RNA maturation site during the evolution of longer internal transcribed spacer regions. Estimates of the secondary structures also indicate only a very limited retention of structural features and suggest that the primary role of the intergenic sequences may be to bring processed sites into close proximity

    In vivo analyses of the internal control region in the 5S rRNA gene from Saccharomyces cerevisiae.

    No full text
    The internal control region of the Saccharomyces cerevisiae 5S rRNA gene has been characterized in vivo by genomic DNase I footprinting and by mutational analyses using base substitutions, deletions or insertions. A high copy shuttle vector was used to efficiently express mutant 5S rRNA genes in vivo and isotope labelling kinetics were used to distinguish impeded gene expression from nascent RNA degradation. In contrast to mutational studies in reconstituted systems, the analyses describe promoter elements which closely resemble the three distinct sequence elements that have been observed in Xenopus laevis 5S rRNA. The results indicate a more highly conserved structure than previously reported with reconstituted systems and suggest that the saturated conditions which are used in reconstitution studies mask sequence dependence which may be physiologically significant. Footprint analyses support the extended region of protein interaction which has recently been observed in some reconstituted systems, but mutational analyses indicate that these interactions are not sequence specific. Periodicity in the footprint provides further detail regarding the in vivo topology of the interacting protein

    In vivo analyses of the internal control region in the 5S rRNA gene from \u3ci\u3eSaccharomyces cerevisiae\u3c/i\u3e

    No full text
    The internal control region of the Saccharomyces cerevisiae 5S rRNA gene has been characterized in vivo by genomic DNase I footprinting and by mutational analyses using base substitutions, deletions or insertions. A high copy shuttle vector was used to efficiently express mutant 5S rRNA genes in vivo and isotope labelling kinetics were used to distinguish impeded gene expression from nascent RNA degradation. In contrast to mutational studies in reconstituted systems, the analyses describe promoter elements which closely resemble the three distinct sequence elements that have been observed in Xenopus laevis 5S rRNA. The results indicate a more highly conserved structure than previously reported with reconstituted systems and suggest that the saturated conditions which are used in reconstitution studies mask sequence dependence which may be physiologically significant. Footprint analyses support the extended region of protein interaction which has recently been observed In some reconstituted systems, but mutational analyses indicate that these Interactions are not sequence specific. Periodicity in the footprint provides further detail regarding the In vivo topology of the interacting protein
    • 

    corecore