492 research outputs found

    Qualifying and quantifying offshore wind farm-generated noise

    Get PDF
    The construction, operation and dismantling of offshore wind farms generate noise both above and under water that may be of environmental concern. The maximum detected sound power level of the above water pin piling noise for example, reached 145 dB(A), while the operational sound power level amounted to 105-115 dB(A) at high wind speed. Underwater construction noise was close to ambient noise levels for gravity based foundations (about 115 dB re 1 µPa RMS), while pin piling and especially monopile piling produced excessive levels of underwater noise up to 194 dB re 1 µPa (zero to peak level at 750m), attenuating to ambient noise levels at a distance of up to 70 km. Whether or not such noise levels are to be considered acceptable will depend on the future implementation of proposed regulations into the Belgian legislation

    Classifying urban public spaces according to their soundscape

    Get PDF
    Cities are composed of many types of outdoor spaces, each with their distinct soundscape. Some of these soundscapes can be extraordinary, others are often less memorable. However, most locations in a city are not visited with the purpose of experiencing the soundscape. Consequently, the soundscape will not necessarily attract attention. Existing methods based on the circumplex model of affect classify soundscapes according to the pleasure and arousal they evoke, but do not fully take into account the goals and expectations of the listener. Therefore, in earlier work, a top-level hierarchical classification method was developed, which distinguishes between spaces based on the degree to which the soundscape creates awareness of the acoustical environment, matches expectations and arouses the listener. This paper presents the results of an immersive laboratory experiment, designed to validate this classification method. The experiment involved 40 participants and 50 audiovisual recordings drawn from the Urban Soundscapes of the World database. It is shown that the proposed classification method results in clearly distinct classes, and that membership to these classes can be explained well by physical parameters, extracted from the acoustical environment as well as the visual scene

    Sound propagation from a ridge wind turbine across a valley

    Get PDF
    Sound propagation outdoors can be strongly affected by ground topography. The existence of hills and valleys between a source and receiver can lead to the shielding or focusing of sound waves. Such effects can result in significant variations in received sound levels. In addition, wind speed and air temperature gradients in the atmospheric boundary layer also play an important role. All of the foregoing factors can become especially important for the case of wind turbines located on a ridge overlooking a valley. Ridges are often selected for wind turbines in order to increase their energy capture potential through the wind speed-up effects often experienced in such locations. In this paper, a hybrid calculation method is presented to model such a case, relying on an analytical solution for sound diffraction around an impedance cylinder and the conformal mapping (CM) Green's function parabolic equation (GFPE) technique. The various aspects of the model have been successfully validated against alternative prediction methods. Example calculations with this hybrid analytical-CM-GFPE model show the complex sound pressure level distribution across the valley and the effect of valley ground type. The proposed method has the potential to include the effect of refraction through the inclusion of complex wind and temperature fields, although this aspect has been highly simplified in the current simulations. This article is part of the themed issue 'Wind energy in complex terrains'

    Toolbox from the EC FP7 HOSANNA project for the reduction of road and rail traffic noise in the outdoor environment

    Get PDF
    yesThis paper offers a brief overview of innovative methods for road and rail traffic noise reduction between source and receiver. These include using new barrier designs, planting of trees, treatments of ground and road surfaces and greening of building façades and roofs using natural materials, like vegetation, soil and other substrates in combination with recycled materials and artificial elements. The abatements are assessed in terms of numerically predicted sound level reductions, perceptual effects and cost–benefit analysis. Useful reductions of noise from urban roads and tramways are predicted for 1-m-high urban noise barriers and these are increased by adding inter-lane barriers. A 3 m wide 0.3 m high lattice ground treatment, a carefully planted 15-m-wide tree belt and replacing 50 m of paved areas by grassland are predicted to give similar reductions. Tree belts are shown to be very cost-effective and combining tall barriers with a row of trees reduces the negative impact of wind. Green roofs may significantly reduce the noise at the quiet side of buildings

    Optimising the future Belgian offshore wind farm monitoring programme

    Get PDF
    Six years of monitoring triggered a reflection on how to best continue with the monitoring programme. The basic monitoring has to be rationalised at the level of the likelihood of impact detection, the meaningfulness of impact size and representativeness of the findings. Targeted monitoring should continue to disentangle processes behind the observed impact, for instance the overarching artificial reef effect created by wind farms. The major challenge however remains to achieve a reliable assessment of the cumulative impacts. Continuing consultation and collaboration within the Belgian offshore wind farm monitoring team and with foreign marine scientists and managers will ensure an optimisation of the future monitoring programme
    • …
    corecore